Skip to main content

Methods for Measuring Exchangeable Protons in Glycosaminoglycans

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2303))

  • 1696 Accesses

Abstract

Recent NMR studies of the exchangeable protons of GAGs in aqueous solution, including those of the amide, sulfamate, and hydroxyl moieties, have demonstrated potential for the detection of intramolecular hydrogen bonds providing insights into secondary structure preferences. GAG amide protons are observable by NMR over wide pH and temperature ranges; however, specific solution conditions are required to reduce the exchange rate of the sulfamate and hydroxyl protons and allow their detection by NMR. Building on the vast body of knowledge on detection of hydrogen bonds in peptides and proteins, a variety of methods can be used to identify hydrogen bonds in GAGs including temperature coefficient measurements, evaluation of chemical shift differences between oligo- and monosaccharides, and relative exchange rates measured through line shape analysis and EXSY spectra. Emerging strategies to allow direct detection of hydrogen bonds through heteronuclear couplings offer promise for the future. Molecular dynamic simulations are important in this effort both to predict and confirm hydrogen bond donors and acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ly M, Leach FE, Laremore TN et al (2011) The proteoglycan bikunin has a defined sequence. Nat Chem Biol 7:827–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jones CJ, Larive CK (2011) Carbohydrates cracking the glycan sequence code. Nat Chem Biol 7:758–759

    Article  CAS  PubMed  Google Scholar 

  3. Jones CJ, Beni S, Limtiaco JFK et al (2011) Heparin characterization: challenges and solutions. Ann Rev Anal Chem 4:439–465

    Article  CAS  Google Scholar 

  4. Xu YM, Pempe EH, Liu J (2012) Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities. J Biol Chem 287:29054–29061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Limtiaco JFK, Beni S, Jones CJ et al (2011) The efficient structure elucidation of minor components in heparin digests using microcoil NMR. Carbohydr Res 346:2244–2254

    Article  CAS  PubMed  Google Scholar 

  6. Guerrini M, Guglieri S, Beccati D et al (2006) Conformational transitions induced in heparin octasaccharides by binding with antithrombin III. Biochem J 399:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bain AD (2003) Chemical exchange in NMR. Prog Nucl Magn Res Spectrosc 43:63–103

    Article  CAS  Google Scholar 

  8. Langeslay DJ, Beni S, Larive CK (2011) Detection of the H-1 and N-15 NMR resonances of sulfamate groups in aqueous solution: a new tool for heparin and heparan sulfate characterization. Anal Chem 83:8006–8010

    Article  CAS  PubMed  Google Scholar 

  9. Ohnishi M, Urry DW (1969) Temperature dependence of amide proton chemical shifts – secondary structures of gramicidin S and valinomycin. Biochem Biophys Res Commun 36:194–202

    Article  CAS  PubMed  Google Scholar 

  10. Englander SW, Kallenbach NR (1983) Hydrogen-exchange and structural dynamics of proteins and nucleic-acids. Q Rev Biophys 16:521–655

    Article  CAS  PubMed  Google Scholar 

  11. Andersen NH, Neidigh JW, Harris SM et al (1997) Extracting information from the temperature gradients of polypeptide NH chemical shifts. 1. The importance of conformational averaging. J Am Chem Soc 119:8547–8561

    Article  CAS  Google Scholar 

  12. Langeslay DJ, Young RP, Beni S et al (2012) Sulfamate proton solvent exchange in heparin oligosaccharides: evidence for a persistent hydrogen bond in the antithrombin-binding pentasaccharide Arixtra. Glycobiology 22:1173–1182

    Article  CAS  PubMed  Google Scholar 

  13. Blundell CD, Deangelis PL, Almond A (2006) Hyaluronan: the absence of amide-carboxylate hydrogen bonds and the chain conformation in aqueous solution are incompatible with stable secondary and tertiary structure models. Biochem J 396:487–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blundell CD, Almond A (2007) Temperature dependencies of amide 1H- and 15N-chemical shifts in hyaluronan oligosaccharides. Magn Reson Chem 45:430–433

    Article  CAS  PubMed  Google Scholar 

  15. Green AR, Li K, Lockard B, Young RP, Mueller LJ, Larive CK (2019) Investigation of the amide proton solvent exchange properties of glycosaminoglycan oligosaccharides. J Phys Chem B 123:4653–4662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Langeslay DJ, Beni S, Larive CK (2012) A closer look at the nitrogen next door: H-1-N-15 NMR methods for glycosaminoglycan structural characterization. J Magn Reson 216:169–174

    Article  CAS  PubMed  Google Scholar 

  17. Adams B, Lerner L (1992) Observation of hydroxyl protons of sucrose in aqueous-solution – no evidence for persistent intramolecular hydrogen-bonds. J Am Chem Soc 114:4827–4829

    Article  CAS  Google Scholar 

  18. Sandstrom C, Baumann H, Kenne L (1998) NMR spectroscopy of hydroxy protons of 3,4-disubstituted methyl α-D-galactopyranosides in aqueous solution. J Chem Soc Perk Trans 2:809–815

    Article  Google Scholar 

  19. Nestor G, Kenne L, Sandstrom C (2010) Experimental evidence of chemical exchange over the β-(1→3) glycosidic linkage and hydrogen bonding involving hydroxy protons in hyaluronan oligosaccharides by NMR spectroscopy. Org Biomol Chem 8:2795–2802

    Article  CAS  PubMed  Google Scholar 

  20. Battistel MD, Pendrill R, Widmalm G et al (2013) Direct evidence for hydrogen bonding in glycans: a combined NMR and molecular dynamics study. J Phys Chem B 117:4860–4869

    Article  CAS  PubMed  Google Scholar 

  21. Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J Biomol NMR 2:661–665

    Article  CAS  PubMed  Google Scholar 

  22. Hwang TL, Shaka AJ (1995) Water suppression that works – excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson Ser A 112:275–279

    Article  CAS  Google Scholar 

  23. Bekiroglu S, Kenne L, Sandström C (2004) NMR study on the hydroxy protons of the Lewis X and Lewis Y oligosaccharides. Carbohydr Res 339:2465–2468

    Article  CAS  PubMed  Google Scholar 

  24. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  25. Pechukas P (1981) Transition state theory. Annu Rev Phys Chem 32:159–177

    Article  CAS  Google Scholar 

  26. Jeener J, Meier BH, Bachmann P et al (1979) Investigation of exchange processes by 2-dimensional NMR-spectroscopy. J Chem Phys 71:4546–4553

    Article  CAS  Google Scholar 

  27. Dobson CM, Lian LY, Redfield C et al (1986) Measurement of hydrogen-exchange rates using 2D NMR-spectroscopy. J Magn Reson 69:201–209

    CAS  Google Scholar 

  28. Poppe L, Vanhalbeek H (1992) The rigidity of sucrose – just an illusion. J Am Chem Soc 114:1092–1094

    Article  CAS  Google Scholar 

  29. Battistel MD, Shangold M, Trinh L et al (2012) Evidence for helical structure in a tetramer of α2-8 sialic acid: unveiling a structural antigen. J Am Chem Soc 134:10717–10720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Langeslay DJ, Beecher CN, Dinges MM et al (2013) Glycosaminoglycan structural characterization. eMagRes 2:205–214

    CAS  Google Scholar 

  31. Van Geet AL (1968) Calibration of the methanol and glycol nuclear magnetic resonance thermometers with a static thermistor probe. Anal Chem 40:2227–2229

    Article  Google Scholar 

  32. Wolfram S (1991) Mathematica: a system for doing mathematics by computer, 2nd edn. Addison-Wesley Publishing Co., Reading, MA

    Google Scholar 

  33. Olsen RA, Liu L, Ghaderi N et al (2003) The amide rotational barriers in picolinamide and nicotinamide: NMR and ab initio studies. J Am Chem Soc 125:10125–10132

    Article  CAS  PubMed  Google Scholar 

  34. Chen JH, Mao XA (1998) Measurement of chemical exchange rate constants with solvent protons using radiation damping. J Magn Reson 131:358–361

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation grant CHE–1213845 to C.K.L. C.B. acknowledges support through a UCR GRMP fellowship and US Department of Education, GAANN Award #P200A120170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia K. Larive .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Beecher, C.N., Larive, C.K. (2022). Methods for Measuring Exchangeable Protons in Glycosaminoglycans. In: Balagurunathan, K., Nakato, H., Desai, U., Saijoh, Y. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 2303. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1398-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1398-6_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1397-9

  • Online ISBN: 978-1-0716-1398-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics