Skip to main content

Mitochondrial Dysfunction in Mitochondrial Medicine: Current Limitations, Pitfalls, and Tomorrow

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2276))

Abstract

Until recently restricted to hereditary mitochondrial diseases, mitochondrial dysfunction is now recognized as a key player and strategic factor in the pathophysiological of many human diseases, ranging from the metabolism, vascular, cardiac, and neurodegenerative diseases to cancer. Because of their participation in a myriad of cellular functions and signaling pathways, precisely identifying the cause of mitochondrial “dysfunctions” can be challenging and requires robust and controlled techniques. Initially limited to the analysis of the respiratory chain functioning, these analytical techniques now enlarge to the analyses of mitochondrial and cellular metabolism, based on metabolomic approaches.

Here, we address the methods used to assay mitochondrial dysfunction, with a highlight on the techniques used in diagnosis on tissues and cells derived from patients, the information they provide, and their strength and weakness.

Targeting mitochondrial dysfunction by various strategies is a huge challenge, requires robust methods of evaluation, and should be able to take into consideration the mitochondria dynamics and localization. The future of mitochondrial medicine is strongly related to a perfect comprehension of its dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burki F (2016) Mitochondrial evolution: going, going, gone. Curr Biol 26:R410–R412. https://doi.org/10.1016/j.cub.2016.04.032

    Article  CAS  PubMed  Google Scholar 

  2. Smith RL, Soeters MR, Wüst RCI, Houtkooper RH (2018) Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev 39:489–517. https://doi.org/10.1210/er.2017-00211

    Article  PubMed  PubMed Central  Google Scholar 

  3. Veloso CD, Belew GD, Ferreira LL et al (2019) A mitochondrial approach to cardiovascular risk and disease. Curr Pharm Des 25:3175–3194. https://doi.org/10.2174/1389203720666190830163735

    Article  CAS  PubMed  Google Scholar 

  4. Onyango IG (2017) Mitochondria in the pathophysiology of Alzheimer’s and Parkinson’s diseases. Front Biosci 22:4521. https://doi.org/10.2741/4521

    Article  Google Scholar 

  5. Jodeiri Farshbaf M, Ghaedi K (2017) Huntington’s disease and mitochondria. Neurotox Res 32:518–529. https://doi.org/10.1007/s12640-017-9766-1

    Article  CAS  PubMed  Google Scholar 

  6. Edeas M, Saleh J, Peyssonnaux C (2020) Iron: innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis 97:303–305. https://doi.org/10.1016/j.ijid.2020.05.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rongvaux A (2018) Innate immunity and tolerance toward mitochondria. Mitochondrion 41:14–20. https://doi.org/10.1016/j.mito.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  8. Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166:555–566. https://doi.org/10.1016/j.cell.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang D, Guo R, Lei L et al (2020) COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome. medRxiv 2020.03.24.20042655. doi:https://doi.org/10.1101/2020.03.24.20042655

  10. Zhou F, Yu T, Du R et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395:1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saleh J, Peyssonnaux C, Singh KK, Edeas M (2020) Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 54:1–7. https://doi.org/10.1016/j.mito.2020.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lodigiani C, Iapichino G, Carenzo L et al (2020) Venous and arterial thromboembolic complications in {COVID}-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res 191:9–14. https://doi.org/10.1016/j.thromres.2020.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giannis D, Ziogas IA, Gianni P (2020) Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 127:104362. https://doi.org/10.1016/j.jcv.2020.104362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Xiao M, Zhang S et al (2020) Coagulopathy and antiphospholipid antibodies in patients with Covid-19. NEJM 38:1–3

    CAS  Google Scholar 

  15. Oxley TJ, Mocco J, Majidi S et al (2020) Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med 382:e60. https://doi.org/10.1056/NEJMc2009787

    Article  PubMed  Google Scholar 

  16. Chevrollier A, Cassereau J, Ferré M et al (2012) Standardized mitochondrial analysis gives new insights into mitochondrial dynamics and OPA1 function. Int J Biochem Cell Biol 44:980–988. https://doi.org/10.1016/j.biocel.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  17. Santidrian AF, Matsuno-Yagi A, Ritland M et al (2013) Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 123:1068–1081. https://doi.org/10.1172/JCI64264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cantó C, Menzies KJ, Auwerx J (2015) NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53. https://doi.org/10.1016/j.cmet.2015.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ježek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503. https://doi.org/10.1016/j.biocel.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  20. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15. https://doi.org/10.1083/jcb.201102095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anderson NM, Mucka P, Kern JG, Feng H (2018) The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9:216–237. https://doi.org/10.1007/s13238-017-0451-1

    Article  CAS  PubMed  Google Scholar 

  23. Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. https://doi.org/10.1038/s41467-019-13668-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Romero-Garcia S, Prado-Garcia H (2019) Mitochondrial calcium: transport and modulation of cellular processes in homeostasis and cancer (Review). Int J Oncol. https://doi.org/10.3892/ijo.2019.4696

  25. Quiles JM, Gustafsson ÅB (2020) Mitochondrial quality control and cellular proteostasis: two sides of the same coin. Front Physiol 11:515. https://doi.org/10.3389/fphys.2020.00515

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118. https://doi.org/10.1146/annurev-genet-102108-134850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weissig V (2020) Drug development for the therapy of mitochondrial diseases. Trends Mol Med 26:40–57. https://doi.org/10.1016/j.molmed.2019.09.002

    Article  CAS  PubMed  Google Scholar 

  28. Bioenergetics 3 (Nicholls, D. G., and Ferguson, S. J., Academic Press, London, 2002). Biochemistry 69, 818–819 (2004). doi:https://doi.org/10.1023/B:BIRY.0000040210.06512.a7

  29. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069. https://doi.org/10.1146/annurev.bi.54.070185.005055

    Article  CAS  PubMed  Google Scholar 

  30. Divakaruni AS, Brand MD (2011) The regulation and physiology of mitochondrial proton leak. Physiology 26:192–205. https://doi.org/10.1152/physiol.00046.2010

    Article  CAS  PubMed  Google Scholar 

  31. De Stefani D, Rizzuto R, Pozzan T (2016) Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85:161–192. https://doi.org/10.1146/annurev-biochem-060614-034216

    Article  CAS  PubMed  Google Scholar 

  32. Hsieh VC, Krane EJ, Morgan PG (2017) Mitochondrial disease and anesthesia. J Inborn Errors Metab Screen 5:232640981770777. https://doi.org/10.1177/2326409817707770

    Article  Google Scholar 

  33. Haschke RH, Fink BR (1975) Lidocaine effects on brain mitochondrial metabolism in vitro. Anesthesiology 42:737–739. https://doi.org/10.1097/00000542-197506000-00018

    Article  CAS  PubMed  Google Scholar 

  34. Gellerich FN, Mayr JA, Reuter S et al (2004) The problem of interlab variation in methods for mitochondrial disease diagnosis: enzymatic measurement of respiratory chain complexes. Mitochondrion 4:427–439. https://doi.org/10.1016/j.mito.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  35. Medja F, Allouche S, Frachon P et al (2009) Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis. Mitochondrion 9:331–339. https://doi.org/10.1016/j.mito.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  36. Signes A, Fernandez-Vizarra E (2018) Assembly of mammalian oxidative phosphorylation complexes I–V and supercomplexes. Essays Biochem 62:255–270. https://doi.org/10.1042/EBC20170098

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cogliati S, Lorenzi I, Rigoni G et al (2018) Regulation of mitochondrial electron transport chain assembly. J Mol Biol 430:4849–4873. https://doi.org/10.1016/j.jmb.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  38. Mimaki M, Wang X, McKenzie M et al (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta Bioenerg 1817:851–862. https://doi.org/10.1016/j.bbabio.2011.08.010

    Article  CAS  Google Scholar 

  39. Desquiret-Dumas V, Leman G, Wetterwald C et al (2019) Warburg-like effect is a hallmark of complex I assembly defects. Biochim Biophys Acta Mol basis Dis 1865:2475–2489. https://doi.org/10.1016/j.bbadis.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  40. Wortmann S, Rodenburg RJT, Huizing M et al (2006) Association of 3-methylglutaconic aciduria with sensori-neural deafness, encephalopathy, and Leigh-like syndrome (MEGDEL association) in four patients with a disorder of the oxidative phosphorylation. Mol Genet Metab 88:47–52. https://doi.org/10.1016/j.ymgme.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  41. Giachin G, Bouverot R, Acajjaoui S et al (2016) Dynamics of human mitochondrial complex I assembly: implications for neurodegenerative diseases. Front Mol Biosci 3:43. https://doi.org/10.3389/fmolb.2016.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miwa S, Jow H, Baty K et al (2014) Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nat Commun 5:3837. https://doi.org/10.1038/ncomms4837

    Article  CAS  PubMed  Google Scholar 

  43. Letts JA, Fiedorczuk K, Sazanov LA (2016) The architecture of respiratory supercomplexes. Nature 537:644–648. https://doi.org/10.1038/nature19774

    Article  CAS  PubMed  Google Scholar 

  44. Dudkina NV, Sunderhaus S, Boekema EJ, Braun H-P (2008) The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. J Bioenerg Biomembr 40:419–424. https://doi.org/10.1007/s10863-008-9167-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231. https://doi.org/10.1016/0003-2697(91)90094-A

    Article  PubMed  Google Scholar 

  46. Calvaruso MA, Smeitink J, Nijtmans L (2008) Electrophoresis techniques to investigate defects in oxidative phosphorylation. Methods 46:281–287. https://doi.org/10.1016/j.ymeth.2008.09.023

    Article  CAS  PubMed  Google Scholar 

  47. Leary SC (2012) Blue native polyacrylamide gel electrophoresis: a powerful diagnostic tool for the detection of assembly defects in the enzyme complexes of oxidative phosphorylation. Methods Mol Biol 837:195–206. https://doi.org/10.1007/978-1-61779-504-6_13

    Article  CAS  PubMed  Google Scholar 

  48. Assouline Z, Jambou M, Rio M et al (2012) A constant and similar assembly defect of mitochondrial respiratory chain complex I allows rapid identification of {NDUFS}4 mutations in patients with Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 1822:1062–1069. https://doi.org/10.1016/j.bbadis.2012.01.013

    Article  CAS  Google Scholar 

  49. Wittig I, Braun H-P, Schägger H (2006) Blue native PAGE. Nat Protoc 1:418–428. https://doi.org/10.1038/nprot.2006.62

    Article  CAS  PubMed  Google Scholar 

  50. Mejia EM, Hatch GM (2016) Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr 48:99–112. https://doi.org/10.1007/s10863-015-9601-4

    Article  CAS  PubMed  Google Scholar 

  51. Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph, and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Mitochondrial dysfunction in drug-induced toxicity. Wiley, New York, pp 325–352. https://doi.org/10.1002/9780470372531.ch12

    Chapter  Google Scholar 

  52. Potter M, Lodge TA, Morten KJ (2018) {CHAPTER} 8: monitoring of extracellular and intracellular O2 on a time-resolved fluorescence plate reader. In: Papkovsky DB, Dmitriev RI (eds) Quenched-phosphorescence detection of molecular oxygen: applications in life sciences; RSC detection science series no. 11. The Royal Society of Chemistry, London, pp 175–192

    Chapter  Google Scholar 

  53. Simonnet H, Vigneron A, Pouysségur J (2014) Conventional techniques to monitor mitochondrial oxygen consumption. Methods Enzymol 542:151–161. https://doi.org/10.1016/B978-0-12-416618-9.00008-X

    Article  CAS  PubMed  Google Scholar 

  54. Grassian AR, Coloff JL, Brugge JS (2011) Extracellular matrix regulation of metabolism and implications for tumorigenesis. Cold Spring Harb Symp Quant Biol 76:313–324. https://doi.org/10.1101/sqb.2011.76.010967

    Article  CAS  PubMed  Google Scholar 

  55. Yépez VA, Kremer LS, Iuso A et al (2018) {OCR}-Stats: robust estimation and statistical testing of mitochondrial respiration activities using Seahorse {XF}. Analyzer 13:e0199938. https://doi.org/10.1371/journal.pone.0199938

    Article  CAS  Google Scholar 

  56. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312. https://doi.org/10.1042/BJ20110162

    Article  CAS  PubMed  Google Scholar 

  57. Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat Protoc 2:287–295. https://doi.org/10.1038/nprot.2006.478

    Article  CAS  PubMed  Google Scholar 

  58. Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739

    Article  CAS  Google Scholar 

  59. Picard M, Taivassalo T, Ritchie D et al (2009) Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One 6:e18317. https://doi.org/10.1371/journal.pone.0018317

    Article  CAS  Google Scholar 

  60. Zorzano A, Liesa M, Sebastián D et al (2010) Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol 21:566–574. https://doi.org/10.1016/j.semcdb.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  61. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. Semin Cell Dev Biol 150:1283–1298. https://doi.org/10.1083/jcb.150.6.1283

    Article  CAS  Google Scholar 

  62. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117. https://doi.org/10.1016/j.tem.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  63. Piper HM, Sezer O, Schleyer M et al (1985) Development of ischemia-induced damage in defined mitochondrial subpopulations. J Mol Cell Cardiol 17:885–896. https://doi.org/10.1016/s0022-2828(85)80102-4

    Article  CAS  PubMed  Google Scholar 

  64. Affourtit C, Brand MD, Al Amir Dache Z et al (2018) Understanding mitochondrial complex I assembly in health and disease. Mitochondrion 9:818–819. https://doi.org/10.1042/EBC20170098

    Article  Google Scholar 

  65. Gueguen N, Lefaucheur L, Ecolan P et al (2005) Ca 2+-activated myosin-ATPases, creatine and adenylate kinases regulate mitochondrial function according to myofibre type in rabbit. J Physiol 564:723–735. https://doi.org/10.1113/jphysiol.2005.083030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kuznetsov AV, Veksler V, Gellerich FN et al (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3:965–976. https://doi.org/10.1038/nprot.2008.61

    Article  CAS  PubMed  Google Scholar 

  67. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393

    Article  CAS  Google Scholar 

  68. Nicholls DG, Bernson VS (1977) Inter-relationships between proton electrochemical gradient, adenine-nucleotide phosphorylation potential and respiration, during substrate-level and oxidative phosphorylation by mitochondria from brown adipose tissue of cold-adapted guinea-pigs. Eur J Biochem 75:601–612. https://doi.org/10.1111/j.1432-1033.1977.tb11560.x

    Article  CAS  PubMed  Google Scholar 

  69. Gnaiger E, Kemp RB (1990) Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux. Biochim Biophys Acta Bioenerg 1016:328–332. https://doi.org/10.1016/0005-2728(90)90164-Y

    Article  CAS  Google Scholar 

  70. Brown GC, Lakin-Thomas PL, Brand MD (1990) Control of respiration and oxidative phosphorylation in isolated rat liver cells. Eur J Biochem 192:355–362. https://doi.org/10.1111/j.1432-1033.1990.tb19234.x

    Article  CAS  PubMed  Google Scholar 

  71. Affourtit C, Brand MD (2009) Chapter 23 measuring mitochondrial bioenergetics in INS-1E insulinoma cell. Methods Enzymol 457:405–424

    Article  CAS  Google Scholar 

  72. Kane MS, Paris A, Codron P et al (2018) Current mechanistic insights into the CCCP-induced cell survival response. Biochem Pharmacol 148:100–110. https://doi.org/10.1016/j.bcp.2017.12.018

    Article  CAS  PubMed  Google Scholar 

  73. Stepanova A, Konrad C, Manfredi G et al (2019) The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A. J Neurochem 148:731–745. https://doi.org/10.1111/jnc.14654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yadava N, Nicholls DG (2007) Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. J Neurosci 27:7310–7317. https://doi.org/10.1523/JNEUROSCI.0212-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rodríguez-Enríquez S, Juárez O, Rodríguez-Zavala JS, Moreno-Sánchez R (2001) Multisite control of the Crabtree effect in ascites hepatoma cells. Eur J Biochem 268:2512–2519. https://doi.org/10.1046/j.1432-1327.2001.02140.x

    Article  PubMed  Google Scholar 

  76. Nicholls DG (2010) Mitochondrial ion circuits. Essays Biochem 47:25–35. https://doi.org/10.1042/bse0470025

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Q, Padayatti PS, Leung JH (2017) Proton-translocating nicotinamide nucleotide transhydrogenase: a structural perspective. Front Physiol 8:1089. https://doi.org/10.3389/fphys.2017.01089

    Article  PubMed  PubMed Central  Google Scholar 

  78. Poburko D, Demaurex N (2012) Regulation of the mitochondrial proton gradient by cytosolic Ca2+ signals. Pflugers Arch 464:19–26. https://doi.org/10.1007/s00424-012-1106-y

    Article  CAS  PubMed  Google Scholar 

  79. Cadenas S (2018) Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg 1859:940–950. https://doi.org/10.1016/j.bbabio.2018.05.019

    Article  CAS  PubMed  Google Scholar 

  80. Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15. https://doi.org/10.1046/j.1432-1327.1998.2520001.x

    Article  CAS  PubMed  Google Scholar 

  81. Cottet-Rousselle C, Ronot X, Leverve X, Mayol J-F (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytom Part A 79A:405–425. https://doi.org/10.1002/cyto.a.21061

    Article  CAS  Google Scholar 

  82. Perry SW, Norman JP, Barbieri J et al (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques 50:98–115. https://doi.org/10.2144/000113610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ward MW, Rego AC, Frenguelli BG, Nicholls DG (2000) Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 20:7208–7219

    Article  CAS  Google Scholar 

  84. Creed S, McKenzie M (2019) Measurement of mitochondrial membrane potential with the fluorescent dye tetramethylrhodamine methyl ester (TMRM). Methods Mol Biol 1928:69–76

    Article  CAS  Google Scholar 

  85. Rahn CA, Bombick DW, Doolittle DJ (1991) Assessment of mitochondrial membrane potential as an indicator of cytotoxicity. Fundam Appl Toxicol 16:435–448. https://doi.org/10.1016/0272-0590(91)90084-h

    Article  CAS  PubMed  Google Scholar 

  86. Moreno AJ, Santos DL, Magalhães-Novais S, Oliveira PJ (2015) Measuring mitochondrial membrane potential with a tetraphenylphosphonium-selective electrode. Curr Protoc Toxicol 65:25.5.1–25.5.16. https://doi.org/10.1002/0471140856.tx2505s65

    Article  Google Scholar 

  87. Renner-Sattler K, Fasching M, Gnaiger E (2016) Mitochondrial Physiology Network 14.05(04):1–13, Technical note. https://wiki.oroboros.at/index.php/MiPNet14.05_TPP-mtMembranePotential

  88. Trijbels JMF, Sengers RCA, Ruitenbeek W et al (1988) Disorders of the mitochondrial respiratory chain: clinical manifestations and diagnostic approach. Eur J Pediatr 148:92–97. https://doi.org/10.1007/BF00445910

    Article  CAS  PubMed  Google Scholar 

  89. Carrozzo R, Dionisi-Vici C, Steuerwald U et al (2007) {SUCLA}2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130:862–874. https://doi.org/10.1093/brain/awl389

    Article  PubMed  Google Scholar 

  90. Chao De La Barca JM, Mirebeau-Prunier D, Moal V et al (2015) Metabolome and mass spectrometry: new biomedical analysis perspectives. Ann Biol Clin (Paris) 73:126–130. https://doi.org/10.1684/abc.2014.1020

    Article  Google Scholar 

  91. Esterhuizen K, van der Westhuizen FH, Louw R (2017) Metabolomics of mitochondrial disease. Mitochondrion 35:97–110. https://doi.org/10.1016/j.mito.2017.05.012

    Article  CAS  PubMed  Google Scholar 

  92. Kouassi Nzoughet J, Chao de la Barca JM, Guehlouz K et al (2019) Nicotinamide deficiency in primary open-angle glaucoma. Investig Opthalmol Vis Sci 60:2509. https://doi.org/10.1167/iovs.19-27099

    Article  CAS  Google Scholar 

  93. Nikkanen J, Forsström S, Euro L et al (2016) Mitochondrial {DNA} replication defects disturb cellular {dNTP} pools and remodel one-carbon metabolism. Cell Metab 23:635–648. https://doi.org/10.1016/j.cmet.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  94. Khan NA, Nikkanen J, Yatsuga S et al (2017) mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab 26:419–428.e5. https://doi.org/10.1016/j.cmet.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  95. Bocca C, Kane MS, Veyrat-Durebex C et al (2018) The metabolomic bioenergetic signature of opa1-disrupted mouse embryonic fibroblasts highlights aspartate deficiency. Sci Rep 8:11528. https://doi.org/10.1038/s41598-018-29972-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rahman J, Rahman S (2018) Mitochondrial medicine in the omics era. Lancet 391:2560–2574. https://doi.org/10.1016/S0140-6736(18)30727-X

    Article  CAS  PubMed  Google Scholar 

  97. Tripodi F, Castoldi A, Nicastro R et al (2018) Methionine supplementation stimulates mitochondrial respiration. Biochim Biophys Acta, Mol Cell Res 1865:1901–1913. https://doi.org/10.1016/j.bbamcr.2018.09.007

    Article  CAS  Google Scholar 

  98. Andréasson C, Ott M, Büttner S (2019) Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 20:e47865. https://doi.org/10.15252/embr.201947865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yi H-S, Chang JY, Shong M (2018) The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases. J Mol Endocrinol 61:R91–R105. https://doi.org/10.1530/JME-18-0005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mick E, Titov DV, Skinner OS et al (2020) Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. elife 9:e49178. https://doi.org/10.7554/eLife.49178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miliotis S, Nicolalde B, Ortega M et al (2019) Forms of extracellular mitochondria and their impact in health. Mitochondrion 48:16–30. https://doi.org/10.1016/j.mito.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  102. Al Amir Dache Z, Otandault A, Tanos R et al (2020) Blood contains circulating cell-free respiratory competent mitochondria. FASEB J 34:3616–3630. https://doi.org/10.1096/fj.201901917RR

    Article  CAS  PubMed  Google Scholar 

  103. Hayakawa K, Chan SJ, Mandeville ET et al (2018) Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 36:1404–1410. https://doi.org/10.1002/stem.2856

    Article  CAS  PubMed  Google Scholar 

  104. Caicedo A, Aponte PM, Cabrera F et al (2017) Artificial mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int 2017:7610414. https://doi.org/10.1155/2017/7610414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the following institutions and patient associations: Université d’Angers and CHU d’Angers, Fondation Maladies Rares and UNADEV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Edeas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gueguen, N., Lenaers, G., Reynier, P., Weissig, V., Edeas, M. (2021). Mitochondrial Dysfunction in Mitochondrial Medicine: Current Limitations, Pitfalls, and Tomorrow. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2276. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1266-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1266-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1265-1

  • Online ISBN: 978-1-0716-1266-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics