Skip to main content

Methods of Gene Expression Profiling to Understand Abiotic Stress Perception and Response in Legume Crops

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2107))

Abstract

Legume crops offer a wide genetic diversity that can be exploited to raise improved crop varieties with higher tolerance against adverse climatic conditions. In order to achieve food and nutritional security, legume breeding programs should also incorporate advanced genomics tools. Genomes of many model and nonmodel legume crops have been sequenced, which provide opportunities to identify and characterize candidate genes to develop abiotic stress tolerant crops. Gene expression profiling is a powerful tool to identify candidate genes and understand their function. The present chapter describes two such strategies, that is, candidate gene expression profiling approach and global transcriptome profiling approach. The methods like RT-PCR and qRT-PCR that are being traditionally used to study expression of target genes under defined experimental conditions are discussed. In addition, global transcriptome analysis approach and its advancements are discussed. Details of next-generation sequencing (NGS) based RNA-sequencing (RNA-seq) and associated advanced bioinformatics tools to identify differentially expressing genes at a global level are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foyer CH, Lam H, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD et al (2016) Neglecting legumes have compromised health and sustainable food production. Nat Plants 2:1–10. https://doi.org/10.1038/nplants.2016.112

    Article  Google Scholar 

  2. Song L, Prince S, Valliyodan B, Joshi T, Maldonado JV, Wang J et al (2016) Genome-wide transcriptome analysis of soybean primary root under varying water- deficit conditions. BMC Genomics 17:57. https://doi.org/10.1186/s12864-016-2378-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Valliyodan B, Qiu D, Patil G, Zeng P, Huang J, Dia L et al (2016) Landscape of genomic diversity and trait discovery in soybean. Sci Rep 6:23598. https://doi.org/10.1038/srep23598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao Y, Halance MK, Gassmann W, Stacey G (2017) The role of plant innate immunity in the legume-Rhizobium symbiosis. Annu Rev Plant Biol 68:535–561. https://doi.org/10.1146/annurev-arplant-042916-041030

    Article  CAS  PubMed  Google Scholar 

  5. Considine MJ, Siddique KHM, Foyer CH (2017) Nature’s pulse power: legumes, food security and climate change. J Exp Bot 68:1815–1818. https://doi.org/10.1093/jxb/erx099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sosa-Valencia G, Palomar M, Covarrubias AA, Reyes JL (2017) The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought. J Exp Bot 68:2013–2026. https://doi.org/10.1093/jxb/erw380

    Article  CAS  PubMed  Google Scholar 

  7. Araujo SS, Beebe S, Crespi M, Delbreil B, Gonzalez EM, Gruber V et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280. https://doi.org/10.1080/07352689.2014.898450

    Article  CAS  Google Scholar 

  8. Kunert KJ, Vorster BJ, Fenta BA, Kibido T, Davis TS (2016) Drought stress responses in soybean roots and nodules. Front Plant Sci 7:1015. https://doi.org/10.3389/fpls.2016.01015

    Article  PubMed  PubMed Central  Google Scholar 

  9. Valdés-lópez O, Batek J, Gomez-hernandez N, Stacey G, Sayre R (2016) Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles. Front Plant Sci 7:517. https://doi.org/10.3389/fpls.2016.00517

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nasr-Esfahani M, Inoue K, Chu HD, Nguyen KH, Ha CV, Watanabe Y et al (2017) Comparative transcriptome analysis of nodules of two Mesorhizobium–chickpea associations with differential symbiotic efficiency under phosphate deficiency. Plant J 91:911–926. https://doi.org/10.1111/tpj.13616.

    Article  CAS  PubMed  Google Scholar 

  11. Maqbool MA, Aslam M, Ali H (2017) Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.). Plant Breed 136:300–318. https://doi.org/10.1111/pbr.12477

    Article  CAS  Google Scholar 

  12. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M et al (2008) Genome structure of the legume lotus japonicus. DNA Res 15:227–239. https://doi.org/10.1093/dnares/dsn008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670

    Article  CAS  PubMed  Google Scholar 

  14. Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524. https://doi.org/10.1038/nature10625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89. https://doi.org/10.1038/nbt.2022

    Article  CAS  PubMed  Google Scholar 

  16. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246. https://doi.org/10.1038/nbt.2491

    Article  CAS  PubMed  Google Scholar 

  17. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW et al (2013) A Draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729. https://doi.org/10.1111/tpj.12173

    Article  CAS  PubMed  Google Scholar 

  18. Ha CV, Watanabe Y, Tran UT, Le DT, Tanaka M, Nguyen KH et al (2015) Comparative analysis of root transcriptomes from two contrasting drought-responsive Williams 82 and DT2008 soybean cultivars under normal and dehydration conditions. Front Plant Sci 6:551. https://doi.org/10.3389/fpls.2015.00551.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Garg R, Shankar R, Thakkar B, Kudapa H (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19288. https://doi.org/10.1038/srep19228

    Article  CAS  Google Scholar 

  20. Garg R, Singh VK, Rajkumar MS, Kumar V, Jain M (2017) Global transcriptome and co-expression network analyses reveal cultivar-specific molecular signatures associated with seed development and seed size/weight determination in chickpea. Plant J 91:1088–1107. https://doi.org/10.1111/tpj.13621

    Article  CAS  PubMed  Google Scholar 

  21. Patil G, Chaudhary J, Vuong TD, Jenkins B, Qiu D, Kadam S et al (2017) Development of SNP genotyping assays for seed composition traits in soybean. Int J Plant Genome 6:572969. https://doi.org/10.1155/2017/6572969.

    Article  Google Scholar 

  22. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236. https://doi.org/10.1093/jxb/erh005

    Article  CAS  PubMed  Google Scholar 

  23. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139. https://doi.org/10.1046/j.1365-3040.2002.00782.x

    Article  CAS  PubMed  Google Scholar 

  24. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071. https://doi.org/10.1126/science.1173041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14:69–79. https://doi.org/10.1007/s12298-008-0006-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P et al (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987. https://doi.org/10.1007/s11033-011-0823-1

    Article  CAS  PubMed  Google Scholar 

  27. Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53:2201–2206. https://doi.org/10.1093/jxb/erf079

    Article  CAS  PubMed  Google Scholar 

  28. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36. https://doi.org/10.1104/pp.103.025395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

    Article  CAS  PubMed  Google Scholar 

  30. Olías R, Eljakaoui Z, Li J, De Morales PA, Marin-Manzano MC, Pardo JM et al (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32:904–916. https://doi.org/10.1111/j.1365-3040.2009.01971.x

    Article  PubMed  Google Scholar 

  31. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901. https://doi.org/10.1073/pnas.120170197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477. https://doi.org/10.1105/tpc.010371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445. https://doi.org/10.1016/S1369-5266(03)00085-2

    Article  CAS  PubMed  Google Scholar 

  34. Oh DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ (2010) Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot 61:1205–1213. https://doi.org/10.1093/jxb/erp391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM et al (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012. https://doi.org/10.1104/pp.106.092635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol 74:367–380. https://doi.org/10.1007/s11103-010-9680-x

    Article  CAS  PubMed  Google Scholar 

  37. Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286. https://doi.org/10.1093/mp/sst017

    Article  CAS  PubMed  Google Scholar 

  38. Hoang XLT, Nhi DNH, Thu NBA, Thao NP, Tran LSP (2017) Transcription factors and their roles in signal transduction in plants under abiotic stresses. Curr Genomics 18:483–497. https://doi.org/10.2174/1389202918666170227150057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324. https://doi.org/10.1016/j.cell.2016.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748. https://doi.org/10.1093/jxb/err210

    Article  CAS  PubMed  Google Scholar 

  41. Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of pgDREB2A transcription factors enhances abiotic stress tolerance and activates downstream responsive genes. Mol Biol Rep 37:1125–1135. https://doi.org/10.1007/s11033-009-9885-8.

    Article  CAS  PubMed  Google Scholar 

  42. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought responses and its crosstalk in abiotic stress responses including drought, cold and heat. Front Plant Sci 5:25. https://doi.org/10.3389/fpls.2014.00170

    Article  Google Scholar 

  43. Joshi R, Wani SH, Singh B, Bohra A, Dar ZH, Lone AA et al (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029. https://doi.org/10.3389/fpls.2016.01029

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R et al (2013) Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): de novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genomics 14:647. https://doi.org/10.1186/1471-2164-14-647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yates SA, Swain MT, Hegarty MJ, Chernukin I, Lowe M, Allison GG et al (2014) De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics 15:453. https://doi.org/10.1186/1471-2164-15-453.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS One 9:e92598. https://doi.org/10.1371/journal.pone.0092598.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Miao Z, Xu W, Li D, Hu X, Liu J, Zhang RT (2015) De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genomics 16:818. https://doi.org/10.1186/s12864-015-2019-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prince SJ, Joshi T, Mutava RN, Syed N, Vitor MSJ, Patil G et al (2015) Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting. Plant Sci 240:65–78. https://doi.org/10.1016/j.plantsci.2015.08.017

    Article  CAS  PubMed  Google Scholar 

  51. Li S, Fan C, Li Y, Zhang J, Sun J, Chen Y et al (2016) Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genomics 17:200. https://doi.org/10.1186/s12864-016-2562-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ (2016) Transcriptome response mediated by cold stress in Lotus japonicus. Front Plant Sci 7:374. https://doi.org/10.3389/fpls.2016.00374

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tian X, Li S, Liu Y, Liu X (2016) Transcriptomic profiling reveals metabolic and regulatory pathways in the desiccation tolerance of Mungbean (Vigna radiata [L.] R. Wilczek) front. Plant Sci 7:1921. https://doi.org/10.3389/fpls.2016.01921

    Article  Google Scholar 

  54. Tan H, Huang H, Tie M, Tang Y, Lai Y, Li H (2016) Transcriptome profiling of two asparagus bean (Vigna unguiculata subsp. sesquipedalis) cultivars differing in chilling tolerance under cold stress. PLoS One 11:e0151105. https://doi.org/10.1371/journal.pone.0151105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakayama TJ, Rodrigues FA, Neumaier N, Marcolino-Gomes J, Molinari HBC, Santiago TR et al (2017) Insights into soybean transcriptome reconfiguration under hypoxic stress: functional, regulatory, structural, and compositional characterization. PLoS ONE 12:e0187920. https://doi.org/10.1371/journal.pone.0187920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Waldeck N, Burkey K, Carter T, Dickey D, Song Q, Taliercio E (2017) RNA-Seq study reveals genetic responses of diverse wild soybean accessions to increased ozone levels. BMC Genomics 18:498. https://doi.org/10.1186/s12864-017-3876-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leisner CP, Yendrel CR, Ainsworth EA (2017) Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress. BMC Plant Biol 17:242. https://doi.org/10.1186/s12870-017-1188-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Singh D, Singh CK, Taunk J, Sewak R, Tomar S, Chaturvedi AK (2017) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18:206. https://doi.org/10.1186/s12864-017-3596-7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang H, Zuelsdorf C, Penneys D, Fan S, Kofsky J, Song B-H (2018) Transcriptome profiling of a beach-adapted wild legume for dissecting novel mechanisms of salinity tolerance. Sci Data 5:180290. https://doi.org/10.1038/sdata.2018.290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kudapa H, Garg V, Chitikineni A, Varshney RK (2018) The RNA-Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development. Plant Cell Environ 41:2209–2225. https://doi.org/10.1111/pce.13210

    Article  CAS  PubMed  Google Scholar 

  61. Vinson CC, Mota APZ, Oliveira TN, Guimaraes LA, Leal-Bertioli SCM, Williams TCR et al (2018) Early responses to dehydration in contrasting wild Arachis species. PLoS One 13:e0198191. https://doi.org/10.1371/journal.pone.0198191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mashaki KM, Garg V, Nasrollahnezhad GAA, Kudapa H, Chitikineni A, Nezhad KZ et al (2018) RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS ONE 13:e0199774. https://doi.org/10.1371/journal.pone.0199774

    Article  CAS  Google Scholar 

  63. Cui F, Sui N, Duan G, Liu Y, Han Y, Liu S, Wan S, Li G (2018) Identification of metabolites and transcripts involved in salt stress and recovery in peanut. Front Plant Sci 9:217. https://doi.org/10.3389/fpls.2018.00217

    Article  PubMed  PubMed Central  Google Scholar 

  64. Silva D, Tsai SM, Chiorato AF, da Silva ASC, Esteves JAF, Recchia GH et al (2019) Analysis of the common bean (Phaseolus vulgaris L.) transcriptome regarding efficiency of phosphorus use. PLoS One 14:e0210428. https://doi.org/10.1371/journal.pone.0210428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Henriet C, Aimé D, Térézol M, Kilandamoko A, Rossin N, Combes-Soia L et al (2019) Water stress combined with sulfur deficiency in pea affects yield components but mitigates the effect of deficiency on seed globulin composition. J Exp Bot 70(16):4287–4304. https://doi.org/10.1093/jxb/erz114

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N et al (2012) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14:671–683. https://doi.org/10.1093/bib/bbs046.

    Article  PubMed  Google Scholar 

  67. Williams AG, Thomas S, Wyman SK, Holloway AK (2014) RNA-seq data: challenges in and recommendations for experimental design and analysis. Curr Protoc Hum Genet 83:11.13.1–11.13.20. https://doi.org/10.1002/0471142905.hg1113s83

    Article  Google Scholar 

  68. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13. https://doi.org/10.1186/s13059-016-0881-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seyednasrollah F, Laiho A, Elo LL (2015) Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform 16:59–70. https://doi.org/10.1093/bib/bbt086

    Article  CAS  PubMed  Google Scholar 

  70. Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR (2017) Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods 14:135–139. https://doi.org/10.1038/nmeth.4106

    Article  CAS  PubMed  Google Scholar 

  71. Costa-Silva J, Domingues D, Lopes FM (2017) RNA-Seq differential expression analysis: an extended review and a software tool. PLoS One 12:e0190152. https://doi.org/10.1371/journal.pone.0190152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Corley SM, MacKenzie KL, Beverdam A, Roddam LF, Wilkins MR (2017) Differentially expressed genes from RNA-Seq and functional enrichment results are affected by the choice of single-end versus paired-end reads and stranded versus non-stranded protocols. BMC Genomics 18:399. https://doi.org/10.1186/s12864-017-3797-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Green MR, Sambrook J (2014) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  74. Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA sequencing: a web resource for analysis on the cloud. PLoS Comput Biol 11:e1004393. https://doi.org/10.1371/journal.pcbi.1004393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj PK et al (2011) An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res Notes 4:85–89. https://doi.org/10.1186/1756-0500-4-85

  76. Sinha R, Sharma TR, Singh AK (2019) Validation of reference genes for qRT-PCR data normalisation in lentil (Lens culinaris) under leaf developmental stages and abiotic stresses. Physiol Mol Biol Plants 25:123–134. https://doi.org/10.1007/s12298-018-0609-1

    Article  CAS  PubMed  Google Scholar 

  77. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. https://doi.org/10.1093/bioinformatics/btr026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619. https://doi.org/10.1371/journal.pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB Net J 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  81. Brown SM (2015) Next-generation DNA sequencing informatics, 2nd edn. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  82. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667. https://doi.org/10.1038/nprot.2016.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C et al (2012) RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28:1530–1532. https://doi.org/10.1093/bioinformatics/bts196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185. https://doi.org/10.1093/bioinformatics/bts356

    Article  CAS  PubMed  Google Scholar 

  86. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515. https://doi.org/10.1038/nbt.1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Garg R, Jain M (2013) RNA-Seq for transcriptome analysis in non-model plants. Methods Mol Biol 1069:43–58. https://doi.org/10.1007/978-1-62703-613-9_4

    Article  CAS  PubMed  Google Scholar 

  89. Chen G, Li R, Shi L, Qi J, Hu P, Luo J et al (2011) Revealing the missing expressed genes beyond the human reference genome by RNA-Seq. BMC Genomics 12:590. https://doi.org/10.1186/1471-2164-12-590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63. https://doi.org/10.1093/dnares/dsq028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Geniza M, Jaiswal P (2017) Tools for building de novo transcriptome assembly. Curr Plant Biol 11–12:41–45. https://doi.org/10.1016/j.cpb.2017.12.004

    Article  Google Scholar 

  92. Hass BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. https://doi.org/10.1038/nprot.2013.084

    Article  CAS  Google Scholar 

  93. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li X, Brock GN, Rouchka EC, Cooper N, Wu D, O’Toole TE et al (2017) A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data. PLoS One 12:e0176185. https://doi.org/10.1371/journal.pone.0176185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25. https://doi.org/10.1186/gb-2010-11-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. https://doi.org/10.1186/gb-2010-11-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hardcastle TJ, Kelly KA (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422. https://doi.org/10.1186/1471-2105-11-422

    Article  PubMed  PubMed Central  Google Scholar 

  98. Evans C, Hardin J, Stoebel DM (2018) Selecting between sample RNA-seq normalisation methods from the perspective of their assumptions. Brief Bioinform 19:776–792. https://doi.org/10.1093/bib/bbx008.

    Article  CAS  PubMed  Google Scholar 

  99. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53. https://doi.org/10.1038/nbt.2450

    Article  CAS  PubMed  Google Scholar 

  101. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A et al (2019) Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 14:482–517. https://doi.org/10.1038/s41596-018-0103-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Libault M, Joshi T, Benedito VA, Xu D, Udvardi MK, Stacey G (2009) Legume transcription factor genes: what makes legumes so special? Plant Physiol 151:991–1001. https://doi.org/10.1104/pp.109.144105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eyidigan F, Oz T (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Act Physiol Plant 29:485–493. https://doi.org/10.1007/s11738-007-0059-9.

    Article  Google Scholar 

  105. Kukreja S, Nandwal AS, Kumar N, Sharma SK, Sharma SK, Unvi V et al (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–308. https://doi.org/10.1007/s10535-005-5308-4

    Article  CAS  Google Scholar 

  106. Agarwal SB, Singh S, Agarwal M (2009) Ultraviolet-B induced changes in gene expression and antioxidants in plants. In: Jacquot J-P (ed) Advances in botanical research, vol 52. Academic, Burlington, VT, pp 47–86

    Google Scholar 

  107. Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684. https://doi.org/10.3390/ijms14059643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim G-B, Nam Y-W (2013) A novel 1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol 170:291–302. https://doi.org/10.1016/j.jplph.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  109. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. https://doi.org/10.1016/j.tplants.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  110. Guo Q, Zhang J, Gao Q, Xing S, Li F, Wang W (2008) Drought tolerance through overexpression of monoubiquitin in transgenic tobacco. Plant Physiol 165:1745–1755. https://doi.org/10.1016/j.jplph.2007.10.002

    Article  CAS  Google Scholar 

  111. Chung E, Cho CW, So HA, Kang JS, Chung YS, Lee JH (2013) Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis. PLoS One 8:e66056. https://doi.org/10.1371/journal.pone.0066056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Noble WS (2009) How does multiple testing correction work? Nat Biotechnol 27:1135–1137. https://doi.org/10.1038/nbt1209-1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.K.S. acknowledges funding support by Indian Council of Agricultural Research, New Delhi in the form of projects IXX12585 and IXX12644. R.S. acknowledges DST-SERB for the National-Postdoctoral Fellowship (PDF/2016/000924), and DST, Govt. of India for funding under the Women Scientists Scheme-A (SR/WOS-A/LS-160/2018). M.B. acknowledges University Grant Commission (UGC), New Delhi for JRF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bala, M., Sinha, R., Mallick, M.A., Sharma, T.R., Singh, A.K. (2020). Methods of Gene Expression Profiling to Understand Abiotic Stress Perception and Response in Legume Crops. In: Jain, M., Garg, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 2107. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0235-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0235-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0234-8

  • Online ISBN: 978-1-0716-0235-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics