Skip to main content

Structure and Function of Surface Polysaccharides of Staphylococcus aureus

  • Chapter
  • First Online:
Staphylococcus aureus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 409))

Abstract

The major surface polysaccharides of Staphylococcus aureus include the capsular polysaccharide (CP), cell wall teichoic acid (WTA), and polysaccharide intercellular adhesin/poly-β(1-6)-N-acetylglucosamine (PIA/PNAG). These glycopolymers are important components of the staphylococcal cell envelope, but none of them is essential to S. aureus viability and growth in vitro. The overall biosynthetic pathways of CP, WTA, and PIA/PNAG have been elucidated, and the functions of most of the biosynthetic enzymes have been demonstrated. Because S. aureus CP and WTA (but not PIA/PNAG) utilize a common cell membrane lipid carrier (undecaprenyl-phosphate) that is shared by the peptidoglycan biosynthesis pathway, there is evidence that these processes are highly integrated and temporally regulated. Regulatory elements that control glycopolymer biosynthesis have been described, but the cross talk that orchestrates the biosynthetic pathways of these three polysaccharides remains largely elusive. CP, WTA, and PIA/PNAG each play distinct roles in S. aureus colonization and the pathogenesis of staphylococcal infection. However, they each promote bacterial evasion of the host immune defences, and WTA is being explored as a target for antimicrobial therapeutics. All the three glycopolymers are viable targets for immunotherapy, and each (conjugated to a carrier protein) is under evaluation for inclusion in a multivalent S. aureus vaccine. Future research findings that increase our understanding of these surface polysaccharides, how the bacterial cell regulates their expression, and their biological functions will likely reveal new approaches to controlling this important bacterial pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BY-kinases:

Bacterial tyrosine kinases

CP:

Capsular polysaccharide

d-FucNAc:

d-N-acetyl fucosamine

d-GlcNAc:

d-N-acetyl glucosamine

d-ManNAc:

d-N-acetyl mannosamine

d-ManNAcA:

d-N-acetyl mannosaminuronic acid

GroP:

Glycerol phosphate

HGT:

Horizontal gene transfer

l-FucNAc:

l-N-acetyl fucosamine

MBL:

Mannose-binding lectin

MurNAc:

N-acetyl muramic acid

NT:

Nontypeable

PIA:

Polysaccharide intercellular adhesin

PNAG:

Poly-β(1-6)-N-acetylglucosamine

PG:

Peptidoglycan

RboP:

Ribitol phosphate

UDP:

Undecaprenyl-phosphate

WTA:

Wall teichoic acid

References

  • Aly R, Shinefield HR, Litz C, Maibach HI (1980) Role of teichoic acid in the binding of Staphylococcus aureus to nasal epithelial cells. J Infect Dis 141:463–465

    Article  CAS  PubMed  Google Scholar 

  • Araki Y, Ito E (1989) Linkage units in cell walls of gram-positive bacteria. Crit Rev Microbiol 17(2):121–135

    Article  CAS  PubMed  Google Scholar 

  • Atilano ML, Pereira PM, Yates J, Reed P, Veiga H, Pinho MG, Filipe SR (2010) Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus. Proc Natl Acad Sci USA 107(44):18991–18996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baddour LM, Lowrance C, Albus A, Lowrance JH, Anderson SK, Lee JC (1992) Staphylococcus aureus microcapsule expression attenuates bacterial virulence in a rat model of experimental endocarditis. J Infect Dis 165:749–753

    Article  CAS  PubMed  Google Scholar 

  • Badurina DS, Zolli-Juran M, Brown ED (2003) CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values. Biochim Biophys Acta 1646(1–2):196–206

    Article  CAS  PubMed  Google Scholar 

  • Barreteau H, Magnet S, El Ghachi M, Touze T, Arthur M, Mengin-Lecreulx D, Blanot D (2009) Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes. J Chromatogr B Anal Technol Biomed Life Sci 877(3):213–220

    Article  CAS  Google Scholar 

  • Baur S, Rautenberg M, Faulstich M, Grau T, Severin Y, Unger C, Hoffmann WH, Rudel T, Autenrieth IB, Weidenmaier C (2014) A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog 10(5):e1004089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertsche U, Weidenmaier C, Kuehner D, Yang SJ, Baur S, Wanner S, Francois P, Schrenzel J, Yeaman MR, Bayer AS (2011) Correlation of daptomycin-resistance in a clinical Staphylococcus aureus strain with increased cell wall teichoic acid production and D-alanylation. Antimicrob Agents Chemother 55:3922

    Google Scholar 

  • Bertsche U, Yang SJ, Kuehner D, Wanner S, Mishra NN, Roth T, Nega M, Schneider A, Mayer C, Grau T, Bayer AS, Weidenmaier C (2013) Increased cell wall teichoic acid production and D-alanylation are common phenotypes among daptomycin-resistant methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. PLoS ONE 8(6):e67398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhasin N, Albus A, Michon F, Livolsi PJ, Park J-S, Lee JC (1998) Identification of a gene essential for O-acetylation of the Staphylococcus aureus type 5 capsular polysaccharide. Mol Microbiol 27:9–21

    Article  CAS  PubMed  Google Scholar 

  • Bhavsar AP, Truant R, Brown ED (2005) The TagB protein in Bacillus subtilis 168 is an intracellular peripheral membrane protein that can incorporate glycerol phosphate onto a membrane-bound acceptor in vitro. J Biol Chem 280(44):36691–36700

    Article  CAS  PubMed  Google Scholar 

  • Bierbaum G, Sahl HG (1985) Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol 141(3):249–254

    Article  CAS  PubMed  Google Scholar 

  • Bischoff M, Dunman P, Kormanec J, Macapagal D, Murphy E, Mounts W, Berger-Bachi B, Projan S (2004) Microarray-based analysis of the Staphylococcus aureus sigmaB regulon. J Bacteriol 186(13):4085–4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas R, Martinez RE, Gohring N, Schlag M, Josten M, Xia G, Hegler F, Gekeler C, Gleske AK, Gotz F, Sahl HG, Kappler A, Peschel A (2012) Proton-binding capacity of Staphylococcus aureus wall teichoic acid and its role in controlling autolysin activity. PLoS ONE 7(7):e41415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittersuermann D (1993) Influence of bacterial polysialic capsules on host defense - masquerade and mimicry. Polysialic Acid. Birkhauser, Basel

    Google Scholar 

  • Boles BR, Thoendel M, Roth AJ, Horswill AR (2010) Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS ONE 5(4):e10146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouhss A, Trunkfield AE, Bugg TD, Mengin-Lecreulx D (2008) The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32(2):208–233

    Article  CAS  PubMed  Google Scholar 

  • Boyle-Vavra S, Li X, Alam MT, Read TD, Sieth J, Cywes-Bentley C, Dobbins G, David MZ, Kumar N, Eells SJ, Miller LG, Boxrud DJ, Chambers HF, Lynfield R, Lee JC, Daum RS (2015) USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. mBio 6(2):e02585–02514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown S, Meredith T, Swoboda J, Walker S (2010) Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways. Chem Biol 17(10):1101–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown S, Santa Maria JP Jr, Walker S (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336

    Google Scholar 

  • Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C, Irazoqui JE, Peschel A, Walker S (2012) Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci USA 109(46):18909–18914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown S, Zhang YH, Walker S (2008) A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chem Biol 15(1):12–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bubeck Wardenburg J, Patel RJ, Schneewind O (2007) Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect Immun 75(2):1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Campbell J, Singh AK, Santa Maria JP Jr, Kim Y, Brown S, Swoboda JG, Mylonakis E, Wilkinson BJ, Walker S (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6(1):106–116

    Google Scholar 

  • Campbell J, Singh AK, Swoboda JG, Gilmore MS, Wilkinson BJ, Walker S (2012) An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in Staphylococcus aureus. Antimicrob Agents Chemother 56(4):1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerca N, Brooks JL, Jefferson KK (2008) Regulation of the intercellular adhesin locus regulator (icaR) by SarA, sigmaB, and IcaR in Staphylococcus aureus. J Bacteriol 190(19):6530–6533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerca N, Jefferson KK, Maira-Litran T, Pier DB, Kelly-Quintos C, Goldmann DA, Azeredo J, Pier GB (2007) Molecular basis for preferential protective efficacy of antibodies directed to the poorly-acetylated form of staphylococcal poly-N-acetyl-{beta}-(1-6)-glucosamine. Infect Immun 75(13):3406–3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YG, Frankel MB, Dengler V, Schneewind O, Missiakas D (2013) Staphylococcus aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the extracellular medium. J Bacteriol 195(20):4650–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YG, Kim HK, Schneewind O, Missiakas D (2014) The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes. J Biol Chem 289(22):15680–15690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cocchiaro JL, Gomez MI, Risley A, Solinga R, Sordelli DO, Lee JC (2006) Molecular characterization of the capsule locus from non-typeable Staphylococcus aureus. Mol Microbiol 59(3):948–960

    Article  CAS  PubMed  Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67(10):5427–5433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cramton SE, Ulrich M, Gotz F, Doring G (2001) Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 69(6):4079–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunnion KM, Lee JC, Frank MM (2001) Capsule production and growth phase influence binding of complement to Staphylococcus aureus. Infect Immun 69:6796–6803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cywes-Bentley C, Skurnik D, Zaidi T, Roux D, Deoliveira RB, Garrett WS, Lu X, O’Malley J, Kinzel K, Zaidi T, Rey A, Perrin C, Fichorova RN, Kayatani AK, Maira-Litran T, Gening ML, Tsvetkov YE, Nifantiev NE, Bakaletz LO, Pelton SI, Golenbock DT, Pier GB (2013) Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc Natl Acad Sci USA 110(24):E2209–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Elia MA, Henderson JA, Beveridge TJ, Heinrichs DE, Brown ED (2009) The N-acetylmannosamine transferase catalyzes the first committed step of teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 191(12):4030–4034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Elia MA, Millar KE, Beveridge TJ, Brown ED (2006a) Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J Bacteriol 188(23):8313–8316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Elia MA, Pereira MP, Chung YS, Zhao W, Chau A, Kenney TJ, Sulavik MC, Black TA, Brown ED (2006b) Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J Bacteriol 188(12):4183–4189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dassy B, Hogan T, Foster TJ, Fournier JM (1993) Involvement of the accessory gene regulator (agr) in expression of type-5 capsular polysaccharide by Staphylococcus aureus. J Gen Microbiol 139:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Dengler V, Meier PS, Heusser R, Kupferschmied P, Fazekas J, Friebe S, Staufer SB, Majcherczyk PA, Moreillon P, Berger-Bachi B, McCallum N (2012) Deletion of hypothetical wall teichoic acid ligases in Staphylococcus aureus activates the cell wall stress response. FEMS Microbiol Lett 333(2):109–120

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Liu X, Chen F, Di H, Xu B, Zhou L, Deng X, Wu M, Yang CG, Lan L (2014) Metabolic sensor governing bacterial virulence in Staphylococcus aureus. Proc Natl Acad Sci USA 111(46):E4981–4990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endl J, Seidl HP, Fiedler F, Schleifer KH (1983) Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch Microbiol 135(3):215–223

    Article  CAS  PubMed  Google Scholar 

  • Endl J, Seidl PH, Fiedler F, Schleifer KH (1984) Determination of cell wall teichoic acid structure of staphylococci by rapid chemical and serological screening methods. Arch Microbiol 137(3):272–280

    Article  CAS  PubMed  Google Scholar 

  • Farha MA, Koteva K, Gale RT, Sewell EW, Wright GD, Brown ED (2014) Designing analogs of ticlopidine, a wall teichoic acid inhibitor, to avoid formation of its oxidative metabolites. Bioorg Med Chem Lett 24(3):905–910

    Article  CAS  PubMed  Google Scholar 

  • Farha MA, Leung A, Sewell EW, D’Elia MA, Allison SE, Ejim L, Pereira PM, Pinho MG, Wright GD, Brown ED (2013) Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to beta-lactams. ACS Chem Biol 8(1):226–233

    Article  CAS  PubMed  Google Scholar 

  • Fattom A, Guidry A (1999) Response to letter to the editor—questions uniqueness of surface polysaccharide. Am J Vet Res 60(5):530

    Google Scholar 

  • Fattom A, Matalon A, Buerkert J, Taylor K, Damaso S, Boutriau D (2015) Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: phase III randomized study. Hum Vaccin Immunother 11(3):632–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Fattom A, Schneerson R, Szu SC, Vann WF, Shiloach J, Karakawa WW, Robbins JB (1990) Synthesis and immunologic properties in mice of vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides conjugated to Pseudomonas aeruginosa exotoxin A. Infect Immun 58(7):2367–2374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fattom A, Schneerson R, Watson DC, Karakawa WW, Fitzgerald D, Pastan I, Li X, Shiloach J, Bryla DA, Robbins JB (1993) Laboratory and clinical evaluation of conjugate vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides bound to Pseudomonas aeruginosa recombinant exoprotein A. Infect Immun 61(3):1023–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fattom AI, Sarwar J, Ortiz A, Naso R (1996) A Staphylococcus aureus capsular polysaccharide (CP) vaccine and CP-specific antibodies protect mice against bacterial challenge. Infect Immun 64(5):1659–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer J, Lee JC, Peters G, Kahl BC (2014) Acapsular clinical Staphylococcus aureus isolates lack agr function. Clin Microbiol Infect 20(7):O414–417

    Article  CAS  PubMed  Google Scholar 

  • Fischer W, Rosel P, Koch HU (1981) Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J Bacteriol 146(2):467–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fluckiger U, Ulrich M, Steinhuber A, Doring G, Mack D, Landmann R, Goerke C, Wolz C (2005) Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect Immun 73(3):1811–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier B, Klier A, Rapoport G (2001) The two-component system ArlS-ArlR is a regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol 41(1):247–261

    Article  CAS  PubMed  Google Scholar 

  • Fournier JM, Vann WF, Karakawa WW (1984) Purification and characterization of Staphylococcus aureus type 8 capsular polysaccharide. Infect Immun 45(1):87–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francois P, Tu Quoc PH, Bisognano C, Kelley WL, Lew DP, Schrenzel J, Cramton SE, Gotz F, Vaudaux P (2003) Lack of biofilm contribution to bacterial colonisation in an experimental model of foreign body infection by Staphylococcus aureus and Staphylococcus epidermidis. FEMS Immunol Med Microbiol 35(2):135–140

    Article  CAS  PubMed  Google Scholar 

  • Frankel MB, Schneewind O (2012) Determinants of murein hydrolase targeting to cross-wall of Staphylococcus aureus peptidoglycan. J Biol Chem 287(13):10460–10471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gening ML, Tsvetkov YE, Pier GB, Nifantiev NE (2007) Synthesis of beta-(1 → 6)-linked glucosamine oligosaccharides corresponding to fragments of the bacterial surface polysaccharide poly-N-acetylglucosamine. Carbohydr Res 342(3–4):567–575

    Article  CAS  PubMed  Google Scholar 

  • George SE, Nguyen T, Geiger T, Weidenmaier C, Lee JC, Liese J, Wolz C (2015) Phenotypic heterogeneity and temporal expression of the capsular polysaccharide in Staphylococcus aureus. Mol Microbiol 98(16):1073–1088

    Google Scholar 

  • Gerke C, Kraft A, Sussmuth R, Schweitzer O, Gotz F (1998) Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273(29):18586–18593

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg C, Zhang YH, Yuan Y, Walker S (2006) In vitro reconstitution of two essential steps in wall teichoic acid biosynthesis. ACS Chem Biol 1(1):25–28

    Article  CAS  PubMed  Google Scholar 

  • Goerke C, Koller J, Wolz C (2006a) Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob Agents Chemother 50(1):171–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goerke C, Wirtz C, Fluckiger U, Wolz C (2006b) Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol Microbiol 61(6):1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Grangeasse C, Cozzone AJ, Deutscher J, Mijakovic I (2007) Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32(2):86–94

    Article  CAS  PubMed  Google Scholar 

  • Gruszczyk J, Olivares-Illana V, Nourikyan J, Fleurie A, Bechet E, Gueguen-Chaignon V, Freton C, Aumont-Nicaise M, Morera S, Grangeasse C, Nessler S (2013) Comparative analysis of the Tyr-kinases CapB1 and CapB2 fused to their cognate modulators CapA1 and CapA2 from Staphylococcus aureus. PLoS ONE 8(10):e75958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Yi W, Song JK, Wang PG (2008) Current understanding on biosynthesis of microbial polysaccharides. Curr Top Med Chem 8(2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Alba J, Xiong YQ, Bayer AS, Lee CY (2013) MgrA activates expression of capsule genes, but not the alpha-toxin gene in experimental Staphylococcus aureus endocarditis. J Infect Dis 208(11):1841–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansenova Manaskova S, Bikker FJ, Veerman EC, van Belkum A, van Wamel WJ (2013) Rapid detection and semi-quantification of IgG-accessible Staphylococcus aureus surface-associated antigens using a multiplex competitive Luminex assay. J Immunol Methods 397(1–2):18–27

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T, Baronian G, Nippe N, Voss M, Schulthess B, Wolz C, Eisenbeis J, Schmidt-Hohagen K, Gaupp R, Sunderkotter C, Beisswenger C, Bals R, Somerville GA, Herrmann M, Molle V, Bischoff M (2014) The catabolite control protein E (CcpE) affects virulence determinant production and pathogenesis of Staphylococcus aureus. J Biol Chem 289(43):29701–29711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Gotz F (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20(5):1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Herbert S, Newell SW, Lee C, Wieland KP, Dassy B, Fournier JM, Wolz C, Doring G (2001) Regulation of Staphylococcus aureus type 5 and type 8 capsular polysaccharides by CO2. J Bacteriol 183:4609–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert S, Worlitzsch D, Dassy B, Boutonnier A, Fournier J-M, Bellon G, Dalhoff A, Doring G (1997) Regulation of Staphylococcus aureus capsular polysaccharide type 5: CO2 inhibition in vitro and in vivo. J Infect Dis 176:431–438

    Article  CAS  PubMed  Google Scholar 

  • Hilmi D, Parcina M, Stollewerk D, Ostrop J, Josten M, Meilaender A, Zaehringer U, Wichelhaus TA, Bierbaum G, Heeg K, Wolz C, Bekeredjian-Ding I (2014) Heterogeneity of host TLR2 stimulation by Staphylocoocus aureus isolates. PLoS ONE 9(5):e96416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hochkeppel HK, Braun DG, Vischer W, Imm A, Sutter S, Staeubli U, Guggenheim R, Kaplan EL, Boutonnier A, Fournier JM (1987) Serotyping and electron microscopy studies of Staphylococcus aureus clinical isolates with monoclonal antibodies to capsular polysaccharide types 5 and 8. J Clin Microbiol 25(3):526–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horwitz MA (1980) The roles of the Fc and C3 receptors in the phagocytosis and killing of bacteria by human phagocytes. J Reticuloendothel Soc 28(Suppl):17s–26s

    CAS  PubMed  Google Scholar 

  • Jansen A, Szekat C, Schroder W, Wolz C, Goerke C, Lee JC, Turck M, Bierbaum G (2013) Production of capsular polysaccharide does not influence Staphylococcus aureus vancomycin susceptibility. BMC Microbiol 13:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson KK, Cramton SE, Gotz F, Pier GB (2003) Identification of a 5-nucleotide sequence that controls expression of the ica locus in Staphylococcus aureus and characterization of the DNA-binding properties of IcaR. Mol Microbiol 48(4):889–899

    Article  CAS  PubMed  Google Scholar 

  • Jenni R, Berger-Bachi B (1998) Teichoic acid content in different lineages of Staphylococcus aureus NCTC8325. Arch Microbiol 170(3):171–178

    Article  CAS  PubMed  Google Scholar 

  • Jones C (2005) Revised structures for the capsular polysaccharides from Staphylococcus aureus types 5 and 8, components of novel glycoconjugate vaccines. Carbohydr Res 340(6):1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Jung DJ, An JH, Kurokawa K, Jung YC, Kim MJ, Aoyagi Y, Matsushita M, Takahashi S, Lee HS, Takahashi K, Lee BL (2012) Specific serum Ig recognizing staphylococcal wall teichoic acid induces complement-mediated opsonophagocytosis against Staphylococcus aureus. J Immunol 189(10):4951–4959

    Article  CAS  PubMed  Google Scholar 

  • Kawai Y, Marles-Wright J, Cleverley RM, Emmins R, Ishikawa S, Kuwano M, Heinz N, Bui NK, Hoyland CN, Ogasawara N, Lewis RJ, Vollmer W, Daniel RA, Errington J (2011) A widespread family of bacterial cell wall assembly proteins. EMBO J 30(24):4931–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly-Quintos C, Cavacini LA, Posner MR, Goldmann D, Pier GB (2006) Characterization of the opsonic and protective activity against Staphylococcus aureus of fully human monoclonal antibodies specific for the bacterial surface polysaccharide poly-N-acetylglucosamine. Infect Immun 74(5):2742–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly-Quintos C, Kropec A, Briggs S, Ordonez C, Goldmann DA, Pier GB (2005) The role of epitope specificity in the human opsonic antibody response to the staphylococcal surface polysaccharide PNAG. J Infect Dis 192(11):2012–2019

    Article  CAS  PubMed  Google Scholar 

  • Kern T, Giffard M, Hediger S, Amoroso A, Giustini C, Bui NK, Joris B, Bougault C, Vollmer W, Simorre JP (2010) Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions. J Am Chem Soc 132(31):10911–10919

    Article  CAS  PubMed  Google Scholar 

  • Kiser KB, Bhasin N, Deng L, Lee JC (1999a) Staphylococcus aureus cap5P encodes a UDP-N-acetylglucosamine 2-epimerase with functional redundancy. J Bacteriol 181(16):4818–4824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiser KB, Cantey-Kiser JM, Lee JC (1999b) Development and characterization of a Staphylococcus aureus nasal colonization model in mice. Infect Immun 67(10):5001–5006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kneidinger B, O’Riordan K, Li J, Brisson JR, Lee JC, Lam JS (2003) Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-D-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa O11 and capsule in Staphylococcus aureus type 5. Implications for the UDP-N-acetyl-L-fucosamine biosynthetic pathway. J Biol Chem 278(6):3615–3627

    Article  CAS  PubMed  Google Scholar 

  • Kojima N, Araki Y, Ito E (1985) Structure of the linkage units between ribitol teichoic acids and peptidoglycan. J Bacteriol 161:299–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolata JB, Kuhbandner I, Link C, Normann N, Vu CH, Steil L, Weidenmaier C, Broker BM (2015) The fall of a dogma? Unexpected high T-cell memory response to Staphylococcus aureus in humans. J Infect Dis 212:830

    Google Scholar 

  • Kropec A, Maira-Litran T, Jefferson KK, Grout M, Cramton SE, Gotz F, Goldmann DA, Pier GB, Kropec A, Maira-Litran T, Jefferson KK, Grout M, Cramton SE, Gotz F, Goldmann DA, Pier GB (2005) Poly-N-acetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models of systemic infection. Infect Immun 73(10):6868–6876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa K, Jung DJ, An JH, Fuchs K, Jeon YJ, Kim NH, Li X, Tateishi K, Park JA, Xia G, Matsushita M, Takahashi K, Park HJ, Peschel A, Lee BL (2013) Glycoepitopes of staphylococcal wall teichoic acid govern complement-mediated opsonophagocytosis via human serum antibody and mannose-binding lectin. J Biol Chem 288(43):30956–30968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuypers JM, Proctor RA (1989) Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus. Infect Immun 57(8):2306–2312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarevic V, Karamata D (1995) The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16(2):345–355

    Article  CAS  PubMed  Google Scholar 

  • Lee DC, Jia Z (2009) Emerging structural insights into bacterial tyrosine kinases. Trends Biochem Sci 34(7):351–357

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Park JS, Shepherd SE, Carey V, Fattom A (1997) Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect Immun 65(10):4146–4151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Takeda S, Livolsi PJ, Paoletti LC (1993) Effects of in vitro and in vivo growth conditions on expression of type 8 capsular polysaccharide by Staphylococcus aureus. Infect Immun 61(5):1853–1858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim NH, Winstel V, Kurokawa K, Larsen J, An JH, Khan A, Seong MY, Lee MJ, Andersen PS, Peschel A, Lee BL (2015) Surface-glycopolymers are crucial for in vitro anti-WTA IgG-mediated complement activation and opsonophagocytosis of Staphylococcus aureus. Infect Immun 83:4247

    Google Scholar 

  • Lee K, Campbell J, Swoboda JG, Cuny GD, Walker S (2010) Development of improved inhibitors of wall teichoic acid biosynthesis with potent activity against Staphylococcus aureus. Bioorg Med Chem Lett 20(5):1767–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy J, Licini L, Haelterman E, Moris P, Lestrate P, Damaso S, Van Belle P, Boutriau D (2015) Safety and immunogenicity of an investigational 4-component Staphylococcus aureus vaccine with or without AS03B adjuvant: results of a randomized phase I trial. Hum Vaccin Immunother 11(3):620–631

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Ulm H, Rausch M, Li X, O’Riordan K, Lee JC, Schneider T, Muller CE (2014) Analysis of the Staphylococcus aureus capsule biosynthesis pathway in vitro: characterization of the UDP-GlcNAc C6 dehydratases CapD and CapE and identification of enzyme inhibitors. Int J Med Microbiol 304(8):958–969

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Zheng L, Landwehr C, Lunsford D, Holmes D, Ji Y (2005) Global regulation of gene expression by ArlRS, a two-component signal transduction regulatory system of Staphylococcus aureus. J Bacteriol 187(15):5486–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517 (7535):455-459

    Google Scholar 

  • Luong T, Sau S, Gomez M, Lee JC, Lee CY (2002a) Regulation of Staphylococcus aureus capsular polysaccharide expression by agr and sarA. Infect Immun 70:444–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luong TT, Lee CY (2006) The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA-dependent pathway. Microbiology 152(Pt 10):3123–3131

    Article  CAS  PubMed  Google Scholar 

  • Luong TT, Newell SW, Lee CY (2003) Mgr, a novel global regulator in Staphylococcus aureus. J Bacteriol 185(13):3703–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luong TT, Ouyang S, Bush K, Lee CY (2002b) Type 1 capsule genes of Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic element. J Bacteriol 184(13):3623–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luong TT, Sau K, Roux C, Sau S, Dunman PM, Lee CY (2011) Staphylococcus aureus ClpC divergently regulates capsule via sae and codY in strain Newman but activates capsule via codY in strain UAMS-1 and in strain Newman with repaired saeS. J Bacteriol 193(3):686–694

    Article  CAS  PubMed  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996a) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack D, Haeder M, Siemssen N, Laufs R (1996b) Association of biofilm production of coagulase-negative staphylococci with expression of a specific polysaccharide intercellular adhesin. J Infect Dis 174(4):881–884

    Article  CAS  PubMed  Google Scholar 

  • Maira-Litran T, Kropec A, Abeygunawardana C, Joyce J, Mark G 3rd, Goldmann DA, Pier GB (2002) Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 70(8):4433–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maira-Litran T, Kropec A, Goldmann DA, Pier GB (2005) Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated Staphylococcal Poly-N-acetyl-beta-(1-6)-glucosamine. Infect Immun 73(10):6752–6762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majerczyk CD, Dunman PM, Luong TT, Lee CY, Sadykov MR, Somerville GA, Bodi K, Sonenshein AL (2010) Direct targets of CodY in Staphylococcus aureus. J Bacteriol 192(11):2861–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majerczyk CD, Sadykov MR, Luong TT, Lee C, Somerville GA, Sonenshein AL (2008) Staphylococcus aureus CodY negatively regulates virulence gene expression. J Bacteriol 190(7):2257–2265

    Article  CAS  PubMed  Google Scholar 

  • Matias VR, Beveridge TJ (2005) Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 56(1):240–251

    Article  CAS  PubMed  Google Scholar 

  • Matias VR, Beveridge TJ (2006) Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J Bacteriol 188(3):1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May JJ, Finking R, Wiegeshoff F, Weber TT, Bandur N, Koert U, Marahiel MA (2005) Inhibition of the D-alanine: D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium’s susceptibility to antibiotics that target the cell wall. FEBS J 272(12):2993–3003

    Article  CAS  PubMed  Google Scholar 

  • McKenney D, Pouliot KL, Wang Y, Murthy V, Ulrich M, Doring G, Lee JC, Goldmann DA, Pier GB (1999) Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284:1523–1527

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin RM, Solinga RM, Rich J, Zaleski KJ, Cocchiaro JL, Risley A, Tzianabos AO, Lee JC (2006) CD4 + T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc Natl Acad Sci USA 103(27):10408–10413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier S, Goerke C, Wolz C, Seidl K, Homerova D, Schulthess B, Kormanec J, Berger-Bachi B, Bischoff M (2007) sigmaB and the sigmaB-dependent arlRS and yabJ-spoVG loci affect capsule formation in Staphylococcus aureus. Infect Immun 75(9):4562–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith TC, Swoboda JG, Walker S (2008) Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus. J Bacteriol 190(8):3046–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misawa Y, Kelley KA, Wang X, Wang L, Park WB, Birtel J, Saslowsky D, Lee JC (2015) Staphylococcus aureus colonization of the mouse gastrointestinal tract is modulated by wall teichoic acid, capsule, and surface proteins. PLoS Pathog 11(7):e1005061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra NN, Bayer AS, Weidenmaier C, Grau T, Wanner S, Stefani S, Cafiso V, Bertuccio T, Yeaman MR, Nast CC, Yang SJ (2014) Phenotypic and genotypic characterization of daptomycin-resistant methicillin-resistant Staphylococcus aureus strains: relative roles of mprF and dlt operons. PLoS ONE 9(9):e107426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montgomery CP, Boyle-Vavra S, Adem PV, Lee JC, Husain AN, Clasen J, Daum RS (2008) Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis 198(4):561–570

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Richards JC, Fournier JM, Byrd RA, Karakawa WW, Vann WF (1990) Structure of the type-5 capsular polysaccharide of Staphylococcus aureus. Carbohydrate Res 201(2):285–297

    Article  CAS  Google Scholar 

  • Moreillon P, Entenza JM, Francioli P, McDevitt D, Foster TJ, Francois P, Vaudaux P (1995) Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun 63(12):4738–4743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morona JK, Morona R, Miller DC, Paton JC (2002) Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol 184(2):577–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller E, Hubner J, Gutierrez N, Takeda S, Goldmann DA, Pier GB (1993) Isolation and characterization of transposon mutants of Staphylococcus epidermidis deficient in capsular polysaccharide/adhesin and slime. Infect Immun 61(2):551–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nanra JS, Buitrago SM, Crawford S, Ng J, Fink PS, Hawkins J, Scully IL, McNeil LK, Aste-Amézaga JM, Cooper D (2013) Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus. Hum Vaccines Immunotherapeutics 9(3):480–487

    Article  CAS  Google Scholar 

  • Nemeth J, Lee JC (1995) Antibodies to capsular polysaccharides are not protective against experimental Staphylococcus aureus endocarditis. Infect Immun 63:375–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67(4):686–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson I-M, Lee JC, Bremell T, Ryden C, Tarkowski A (1997) The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect Immun 65:4216–4221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nissen M, Marshall H, Richmond P, Shakib S, Jiang Q, Cooper D, Rill D, Baber J, Eiden J, Gruber W, Jansen KU, Emini EA, Anderson AS, Zito ET, Girgenti D (2015) A randomized phase I study of the safety and immunogenicity of three ascending dose levels of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults. Vaccine 33(15):1846–1854

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564

    Article  CAS  PubMed  Google Scholar 

  • O’Riordan K, Lee JC (2004) Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17(1):218–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park KH, Kurokawa K, Zheng L, Jung DJ, Tateishi K, Jin JO, Ha NC, Kang HJ, Matsushita M, Kwak JY, Takahashi K, Lee BL (2010) Human serum mannose-binding lectin senses wall teichoic acid glycopolymer of Staphylococcus aureus, which is restricted in infancy. J Biol Chem 285(35):27167–27175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Gerber S, Lee JC (2014) Antibodies to Staphylococcus aureus serotype 8 capsular polysaccharide react with and protect against serotype 5 and 8 isolates. Infect Immun 82(12):5049–5055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W (1995) Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 270(26):15598–15606

    Article  CAS  PubMed  Google Scholar 

  • Pereira MP, Brown ED (2004) Bifunctional catalysis by CDP-ribitol synthase: convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae and Staphylococcus aureus. Biochemistry 43(37):11802–11812

    Article  CAS  PubMed  Google Scholar 

  • Pereira MP, D’Elia MA, Troczynska J, Brown ED (2008) Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. J Bacteriol 190(16):5642–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274(13):8405–8410

    Article  CAS  PubMed  Google Scholar 

  • Peschel A, Vuong C, Otto M, Gotz F (2000) The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother 44(10):2845–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohl K, Francois P, Stenz L, Schlink F, Geiger T, Herbert S, Goerke C, Schrenzel J, Wolz C (2009) CodY in Staphylococcus aureus: a regulatory link between metabolism and virulence gene expression. J Bacteriol 191(9):2953–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohlmann-Dietze P, Ulrich M, Kiser KB, Doring G, Lee JC, Fournier JM, Botzenhart K, Wolz C (2000) Adherence of Staphylococcus aureus to endothelial cells: influence of capsular polysaccharide, global regulator agr, and bacterial growth phase. Infect Immun 68(9):4865–4871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portoles M, Kiser KB, Bhasin N, Chan KHN, Lee JC (2001) Staphylococcus aureus Cap5O has UDP-ManNAc dehydrogenase activity and is essential for capsule expression. Infect Immun 69:917–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poutrel B, Gilbert FB, Lebrun M (1995) Effects of culture conditions on production of type 5 capsular polysaccharide by human and bovine Staphylococcus aureus strains. Clin Diagn Lab Immunol 2:166–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poutrel B, Rainard P, Sarradin P (1997) Heterogeneity of cell-associated CP5 expression on Staphylococcus aureus strains demonstrated by flow cytometry. Clin Diagn Lab Immunol 4:275–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qamar A, Golemi-Kotra D (2012) Dual roles of FmtA in Staphylococcus aureus cell wall biosynthesis and autolysis. Antimicrob Agents Chemother 56(7):3797–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Z, Yin Y, Zhang Y, Lu L, Li Y, Jiang Y (2006) Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus: genes, genomic organization and gene duplication. BMC Genom 7:74

    Article  CAS  Google Scholar 

  • Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W (2000) Alternative transcription factor sigma(B) is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J Bacteriol 182(23):6824–6826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichmann NT, Cassona CP, Grundling A (2013) Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology 159(Pt 9):1868–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risley AL, Loughman A, Cywes-Bentley C, Foster TJ, Lee JC (2007) Capsular polysaccharide masks clumping factor A-mediated adherence of Staphylococcus aureus to fibrinogen and platelets. J Infect Dis 196(6):919–927

    Article  CAS  PubMed  Google Scholar 

  • Roberts IS, Saunders FK, Boulnois GJ (1989) Bacterial capsules and interactions with complement and phagocytes. Biochem Soc Trans 17(3):462–464

    Article  CAS  PubMed  Google Scholar 

  • Roghmann M, Taylor KL, Gupte A, Zhan M, Johnson JA, Cross A, Edelman R, Fattom AI (2005) Epidemiology of capsular and surface polysaccharide in Staphylococcus aureus infections complicated by bacteraemia. J Hosp Infect 59(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Romilly C, Lays C, Tomasini A, Caldelari I, Benito Y, Hammann P, Geissmann T, Boisset S, Romby P, Vandenesch F (2014) A non-coding RNA promotes bacterial persistence and decreases virulence by regulating a regulator in Staphylococcus aureus. PLoS Pathog 10(3):e1003979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadovskaya I, Vinogradov E, Flahaut S, Kogan G, Jabbouri S (2005) Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun 73(5):3007–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sau S, Bhasin N, Wann ER, Lee JC, Foster TJ, Lee CY (1997a) The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiol 143:2395–2405

    Article  CAS  Google Scholar 

  • Sau S, Sun J, Lee CY (1997b) Molecular characterization and transcriptional analysis of type 8 capsule genes in Staphylococcus aureus. J Bacteriol 179:1614–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer AC, Solinga RM, Cocchiaro J, Portoles M, Kiser KB, Risley A, Randall SM, Valtulina V, Speziale P, Walsh E, Foster T, Lee JC (2006) Immunization with Staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Infect Immun 74(4):2145–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlag M, Biswas R, Krismer B, Kohler T, Zoll S, Yu W, Schwarz H, Peschel A, Gotz F (2010) Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol 75(4):864–873

    Article  CAS  PubMed  Google Scholar 

  • Schulthess B, Meier S, Homerova D, Goerke C, Wolz C, Kormanec J, Berger-Bachi B, Bischoff M (2009) Functional characterization of the sigmaB-dependent yabJ-spoVG operon in Staphylococcus aureus: role in methicillin and glycopeptide resistance. Antimicrob Agents Chemother 53(5):1832–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scully IL, Liberator PA, Jansen KU, Anderson AS (2014) Covering all the bases: preclinical development of an effective Staphylococcus aureus vaccine. Front Immunol 5:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scully IL, Timofeyeva Y, Keeney D, Matsuka YV, Severina E, McNeil LK, Nanra J, Hu G, Liberator PA, Jansen KU, Anderson AS (2015) Demonstration of the preclinical correlate of protection for Staphylococcus aureus clumping factor A in a murine model of infection. Vaccine 33(41):5452–5457

    Article  CAS  PubMed  Google Scholar 

  • Seidl K, Stucki M, Ruegg M, Goerke C, Wolz C, Harris L, Berger-Bachi B, Bischoff M (2006) Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance. Antimicrob Agents Chemother 50(4):1183–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewell EW, Brown ED (2014) Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. J Antibiot (Tokyo) 67(1):43–51

    Article  CAS  Google Scholar 

  • Shinefield H, Black S, Fattom A, Horwith G, Rasgon S, Ordonez J, Yeoh H, Law D, Robbins JB, Schneerson R, Muenz L, Fuller S, Johnson J, Fireman B, Alcorn H, Naso R (2002) Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med 346(7):491–496

    Article  PubMed  Google Scholar 

  • Skurnik D, Merighi M, Grout M, Gadjeva M, Maira-Litran T, Ericsson M, Goldmann DA, Huang SS, Datta R, Lee JC, Pier GB (2010) Animal and human antibodies to distinct Staphylococcus aureus antigens mutually neutralize opsonic killing and protection in mice. J Clin Invest 120(9):3220–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldo B, Lazarevic V, Karamata D (2002a) tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148(Pt 7):2079–2087

    Article  CAS  PubMed  Google Scholar 

  • Soldo B, Lazarevic V, Pooley HM, Karamata D (2002b) Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH) encodes the UDP-N-acetylglucosamine 2-epimerase. J Bacteriol 184(15):4316–4320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soulat D, Grangeasse C, Vaganay E, Cozzone AJ, Duclos B (2007) UDP-acetyl-mannosamine dehydrogenase is an endogenous protein substrate of Staphylococcus aureus protein-tyrosine kinase activity. J Mol Microbiol Biotechnol 13(1–3):45–54

    Article  CAS  PubMed  Google Scholar 

  • Soulat D, Jault JM, Duclos B, Geourjon C, Cozzone AJ, Grangeasse C (2006) Staphylococcus aureus operates protein-tyrosine phosphorylation through a specific mechanism. J Biol Chem 281(20):14048–14056

    Article  CAS  PubMed  Google Scholar 

  • Steinhuber A, Goerke C, Bayer MG, Doring G, Wolz C (2003) Molecular architecture of the regulatory locus sae of Staphylococcus aureus and its impact on expression of virulence factors. J Bacteriol 185(21):6278–6286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Ji Q, Jones MB, Deng X, Liang H, Frank B, Telser J, Peterson SN, Bae T, He C (2012) AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus. J Am Chem Soc 134(1):305–314

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe IC (2012) Exposing a chink in the armor of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 109(46):18637–18638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Campbell J, Swoboda JG, Walker S, Gilmore MS (2011a) Role of wall teichoic acids in Staphylococcus aureus endophthalmitis. Invest Ophthalmol Vis Sci 52(6):3187–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Swoboda JG, Campbell J, Walker S, Gilmore MS (2011b) In vitro antimicrobial activity of wall teichoic acid biosynthesis inhibitors against Staphylococcus aureus isolates. Antimicrob Agents Chemother 55(2):767–774

    Article  CAS  PubMed  Google Scholar 

  • Swoboda JG, Campbell J, Meredith TC, Walker S (2010) Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem 11(1):35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swoboda JG, Meredith TC, Campbell J, Brown S, Suzuki T, Bollenbach T, Malhowski AJ, Kishony R, Gilmore MS, Walker S (2009) Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem Biol 4(10):875–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Kurokawa K, Moyo P, Jung DJ, An JH, Chigweshe L, Paul E, Lee BL (2013) Intradermal immunization with wall teichoic acid (WTA) elicits and augments an anti-WTA IgG response that protects mice from methicillin-resistant Staphylococcus aureus infection independent of mannose-binding lectin status. PLoS ONE 8(8):e69739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakker M, Park J-S, Carey V, Lee JC (1998) Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect Immun 66:5183–5189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thoendel M, Kavanaugh JS, Flack CE, Horswill AR (2011) Peptide signaling in the staphylococci. Chem Rev 111(1):117–151

    Article  CAS  PubMed  Google Scholar 

  • Thomas KJ, Rice CV (2015) Equilibrium binding behavior of magnesium to wall teichoic acid. Biochim Biophys Acta 1848 (10 Pt A):1981–1987

    Google Scholar 

  • Tu Quoc PH, Genevaux P, Pajunen M, Savilahti H, Georgopoulos C, Schrenzel J, Kelley WL (2007) Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun 75(3):1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Tuchscherr LP, Buzzola FR, Alvarez LP, Caccuri RL, Lee JC, Sordelli DO (2005) Capsule-negative Staphylococcus aureus induces chronic experimental mastitis in mice. Infect Immun 73(12):7932–7937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuchscherr LP, Buzzola FR, Alvarez LP, Lee JC, Sordelli DO (2008) Antibodies to capsular polysaccharide and clumping factor A prevent mastitis and the emergence of unencapsulated and small-colony variants of Staphylococcus aureus in mice. Infect Immun 76(12):5738–5744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzianabos AO, Wang JY, Lee JC (2001) Structural rationale for the modulation of abscess formation by Staphylococcus aureus capsular polysaccharides. Proc Natl Acad Sci USA 98(16):9365–9370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penades JR (2005) Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 56(3):836–844

    Article  CAS  PubMed  Google Scholar 

  • Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, Lasa I (2003) SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48(4):1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Verdier I, Durand G, Bes M, Taylor KL, Lina G, Vandenesch F, Fattom AI, Etienne J (2007) Identification of the capsular polysaccharides in Staphylococcus aureus clinical isolates by PCR and agglutination tests. J Clin Microbiol 45(3):725–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M (2004a) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279(52):54881–54886

    Article  CAS  PubMed  Google Scholar 

  • Vuong C, Kocianova S, Yao Y, Carmody AB, Otto M (2004b) Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis 190(8):1498–1505

    Article  PubMed  Google Scholar 

  • Wacker M, Wang L, Kowarik M, Dowd M, Lipowsky G, Faridmoayer A, Shields K, Park S, Alaimo C, Kelley KA, Braun M, Quebatte J, Gambillara V, Carranza P, Steffen M, Lee JC (2014) Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J Infect Dis 209(10):1551–1561

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC, Murgolo N, She X, Kales S, Liang L, Liu J, Wu J, Santa Maria J, Su J, Pan J, Hailey J, McGuinness D, Tan CM, Flattery A, Walker S, Black T, Roemer T (2013) Discovery of wall teichoic acid inhibitors as potential anti-MRSA beta-lactam combination agents. Chem Biol 20(2):272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts A, Ke D, Wang Q, Pillay A, Nicholson-Weller A, Lee JC (2005) Staphylococcus aureus strains that express serotype 5 or serotype 8 capsular polysaccharides differ in virulence. Infect Immun 73(6):3502–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wecke J, Perego M, Fischer W (1996) D-alanine deprivation of Bacillus subtilis teichoic acids is without effect on cell growth and morphology but affects the autolytic activity. Microb Drug Resist 2(1):123–129

    Article  CAS  PubMed  Google Scholar 

  • Weidenmaier C, Goerke C, Wolz C (2012) Staphylococcus aureus determinants for nasal colonization. Trends Microbiol 20(5):243–250

    Article  CAS  PubMed  Google Scholar 

  • Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10(3):243–245

    Article  CAS  PubMed  Google Scholar 

  • Weidenmaier C, McLoughlin RM, Lee JC (2010) The zwitterionic cell wall teichoic acid of Staphylococcus aureus provokes skin abscesses in mice by a novel CD4 + T-cell-dependent mechanism. PLoS ONE 5(10):e13227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6(4):276–287

    Article  CAS  PubMed  Google Scholar 

  • Weidenmaier C, Peschel A, Xiong YQ, Kristian SA, Dietz K, Yeaman MR, Bayer AS (2005) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191(10):1771–1777

    Article  CAS  PubMed  Google Scholar 

  • Wickham JR, Halye JL, Kashtanov S, Khandogin J, Rice CV (2009) Revisiting magnesium chelation by teichoic acid with phosphorus solid-state NMR and theoretical calculations. J Phys Chem B 113(7):2177–2183

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson J (1958) The extracellular polysaccharides of bacteria. Bacteriol Rev 22:46–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winstel V, Kuhner P, Salomon F, Larsen J, Skov R, Hoffmann W, Peschel A, Weidenmaier C (2015) Wall teichoic acid glycosylation governs Staphylococcus aureus nasal colonization. mBio 6 (4):e00632

    Google Scholar 

  • Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Broker BM, Penades JR, Nubel U, Holst O, Dandekar T, Peschel A, Xia G (2013) Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat Commun 4:2345

    Article  PubMed  PubMed Central  Google Scholar 

  • Winstel V, Sanchez-Carballo P, Holst O, Xia G, Peschel A (2014a) Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395. mBio 5 (2):e00869

    Google Scholar 

  • Winstel V, Xia G, Peschel A (2014b) Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. Int J Med Microbiol 304(3-4):215-221

    Google Scholar 

  • Xia G, Corrigan RM, Winstel V, Goerke C, Grundling A, Peschel A (2011) Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J Bacteriol 193(15):4006–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia G, Maier L, Sanchez-Carballo P, Li M, Otto M, Holst O, Peschel A (2010) Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J Biol Chem 285(18):13405–13415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia G, Wolz C (2014) Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol 21:593–601

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Ginsberg C, Yuan Y, Walker S (2006) Acceptor substrate selectivity and kinetic mechanism of Bacillus subtilis TagA. Biochemistry 45(36):10895–10904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean C. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weidenmaier, C., Lee, J.C. (2015). Structure and Function of Surface Polysaccharides of Staphylococcus aureus . In: Bagnoli, F., Rappuoli, R., Grandi, G. (eds) Staphylococcus aureus. Current Topics in Microbiology and Immunology, vol 409. Springer, Cham. https://doi.org/10.1007/82_2015_5018

Download citation

Publish with us

Policies and ethics