Skip to main content

Single-Cell mRNA-sncRNA Co-sequencing of Preimplantation Embryos

  • Protocol
  • First Online:
Embryo Models In Vitro

Abstract

The development of single-cell multiomics has provided the ability to systematically investigate cellular diversity and heterogeneity in different biological systems via comprehensive delineations of individual cellular states. Single-cell RNA sequencing in particular has served as a powerful tool to the study of the molecular circuitries underlying preimplantation embryonic development in both the mouse and human. Here we describe a method to elucidate the cellular dynamics of the embryo further by performing both single-cell RNA sequencing (Smart-Seq2) and single-cell small non-coding RNA sequencing (Small-Seq) on the same individual embryonic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biondic S, Canizo J, Vandal K et al (2023) Cross-species comparison of mouse and human preimplantation development with an Emphasis on Lineage Specification. Reproduction:R1–R14

    Google Scholar 

  2. Aalto AP, Pasquinelli AE (2012) Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol 24:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang Z, Zhuang L, Lin C-P (2019) Roles of MicroRNAs in establishing and modulating stem cell potential. Int J Mol Sci 20:3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gu K-L, Zhang Q, Yan Y et al (2016) Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Res 26:350–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Viswanathan SR, Mermel CH, Lu J et al (2009) microRNA expression during trophectoderm specification. PLOS ONE 4:e6143

    Google Scholar 

  6. García-López J, Alonso L, Cárdenas DB et al (2015) Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA 21:946–962

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang Y, Blelloch R (2009) Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res 69:4093–4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hagemann-Jensen M, Abdullayev I, Sandberg R et al (2018) Small-seq for single-cell small-RNA sequencing. Nat Protoc 13:2407–2424

    Article  CAS  PubMed  Google Scholar 

  9. Picelli S, Björklund ÅK, Faridani OR et al (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098

    Article  CAS  PubMed  Google Scholar 

  10. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  11. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  12. Smith T, Heger A, Sudbery I (2017) UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 27:491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10–12

    Google Scholar 

  14. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shen W, Le S, Li Y et al (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11:e0163962

    Article  PubMed  PubMed Central  Google Scholar 

  16. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma Oxf Engl 26:841–842

    Article  CAS  Google Scholar 

  17. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  18. Finak G, McDavid A, Yajima M et al (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:278

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ewels PA, Peltzer A, Fillinger S et al (2020) The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 38:276–278

    Article  CAS  PubMed  Google Scholar 

  20. Andrews S FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  21. Faridani OR, Abdullayev I, Hagemann-Jensen M et al (2016) Single-cell sequencing of the small-RNA transcriptome. Nat Biotechnol 34:1264–1266

    Article  CAS  PubMed  Google Scholar 

  22. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

    Article  CAS  PubMed  Google Scholar 

  23. Harrow J, Frankish A, Gonzalez JM et al (2012) GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res 22:1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chan PP, Lowe TM (2016) GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res 44:D184–D189

    Article  CAS  PubMed  Google Scholar 

  25. Petropoulos S, Edsgärd D, Reinius B et al (2016) Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165:1012–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Posfai E, Petropoulos S, de Barros FRO et al (2017) Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. elife 6:e22906

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao C, Biondic S, Vandal K et al (2022) Single-cell multi-omics of human preimplantation embryos demonstrates susceptibility to glucocorticoids. Genome Res gr.276665.122

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (PJT-178082), the Swedish Research Council (2016-01919), and Swedish Society for Medical Research (Dnr4-236-2107). SP holds the Canada Research Chair in Functional Genomics of Reproduction and Development (950-233204) and KV was granted a NSERC PGS D scholarship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table S1

Petropoulos sncRNA seq Indexes (XLSX 18 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Biondic, S. et al. (2023). Single-Cell mRNA-sncRNA Co-sequencing of Preimplantation Embryos. In: Zernicka-Goetz, M., Turksen, K. (eds) Embryo Models In Vitro. Methods in Molecular Biology, vol 2767. Humana, New York, NY. https://doi.org/10.1007/7651_2023_487

Download citation

  • DOI: https://doi.org/10.1007/7651_2023_487

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3685-5

  • Online ISBN: 978-1-0716-3686-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics