Skip to main content

Antibiotic Resistance Elements in Wastewater Treatment Plants: Scope and Potential Impacts

  • Chapter
  • First Online:
Wastewater Reuse and Current Challenges

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 44))

Abstract

Antibiotic resistance is considered to be one of the most significant public health concerns of the twenty-first century. Although traditionally the propagation of antibiotic resistance was considered to be limited to hospitals and other clinical environments, there is a growing realization that it is also associated with anthropogenically impacted environmental reservoirs. Wastewater treatment plants are considered to be significant reservoirs of antibiotic resistance because they combine extremely high levels of fecal- and environmental-derived bacteria with residual concentrations of antibiotic compounds believed to induce selection. These bacteria are primarily congregated in dense biofilms that are “hot spots” for horizontal gene transfer, which can facilitate inter- and intraspecies transfer of antibiotic genes, potentially resulting in the development of multidrug-resistant strains. Several studies have demonstrated that although wastewater treatment plants significantly reduce bacterial concentrations, relatively high levels of antibiotic-resistant bacteria and resistance genes are still present in effluents released to aquatic and soil environments and that under certain circumstances these resistance elements may persist for long periods of time in downstream environments. These elements may have significant epidemiological ramifications, especially when effluents enter drinking water and food webs; and henceforth, antibiotic resistance genes have recently been characterized as contaminants of emerging concern. This chapter summarizes current understanding of antibiotic resistance in wastewater treatment plants and downstream environments, presents knowledge gaps that need to be bridged in order to better understand the potential ramifications of this phenomenon, overviews the effect of disinfection treatments on antibiotic resistance elements, and finally discusses policy guidelines that should be implemented in the future to reduce the risks of antibiotic resistance from wastewater treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Antibiotic resistance

ARB:

Antibiotic-resistant bacteria

ARGs:

Antibiotic resistance genes

BHR:

Broad host range

CFU:

Colony-forming units

CIs:

Chromosomal integrons

E-COFF:

Epidemiological cutoff

ERIC:

Enterobacterial repetitive intergenic consensus

ESBL:

Extended spectrum beta-lactamase

GC:

Gene cassettes

GFP:

Green fluorescent protein

HGT:

Horizontal gene transfer

IS:

Insertion sequences

ISCR:

Insertion sequence common regions

MAR:

Multiple antibiotic resistance

MDR:

Multiple drug resistance

MGEs:

Mobile genetic elements

MIC:

Minimal inhibitory concentration

MIs:

Mobile integrons

MLST:

Multilocus sequence typing

MRIs:

Multidrug-resistant integrons

NGS:

Next-generation sequencing

Pc:

Promoter

PCR:

Polymerase chain reaction

qPCR:

Quantitative polymerase chain reaction

RIs:

Resistant integrons

TRACA:

Transposon-aided capture

UV:

Ultraviolet

VRE:

Vancomycin-resistant Enterococcus faecium

WW:

Wastewater

WWTPs:

Wastewater treatment plants

References

  1. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    Article  CAS  Google Scholar 

  2. Dzidic S, Suskovic J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotech 46:11–21

    CAS  Google Scholar 

  3. Jayaraman R (2009) Antibiotic resistance: an overview of mechanisms and a paradigm shift. Curr Sci 96:1475–1484

    CAS  Google Scholar 

  4. Van Meervenne E, Van Coillie E, Kerckhof FM et al (2012) Strain-specific transfer of antibiotic resistance from an environmental plasmid to foodborne pathogens. J Biomed Biotechnol 2012:834598

    Google Scholar 

  5. Rahube T, Yost C (2010) Antibiotic resistance plasmids in wastewater treatment plants and their possible dissemination into the environment. Afr J Biotechnol 9:9183–9190

    CAS  Google Scholar 

  6. Pellegrini C, Celenza G, Segatore B et al (2011) Occurrence of Class 1 and 2 Integrons in resistant Enterobacteriaceae collected from a urban wastewater treatment plant: first report from central Italy. Microb Drug Resist 17:229–234

    Article  CAS  Google Scholar 

  7. Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotech 19:260–265

    Article  CAS  Google Scholar 

  8. Chee-Sanford JC, Mackie RI, Koike S et al (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38:1086–1108

    Article  CAS  Google Scholar 

  9. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol R 74:417–433

    Article  CAS  Google Scholar 

  10. Martinez JL (2009) The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc R Soc Biol Sci 276:2521–2530

    Article  Google Scholar 

  11. Silbergeld E, Davis M, Leibler J et al (2008) One reservoir: redefining the community origins of antimicrobial-resistant infections. Med Clin North Am 92:1391–1407

    Article  Google Scholar 

  12. Zhang YL, Marrs CF, Simon C et al (2009) Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci Total Environ 407:3702–3706

    Article  CAS  Google Scholar 

  13. Negreanu Y, Pasternak Z, Jurkevitch E et al (2012) Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environ Sci Technol 46:4800–4808

    Article  CAS  Google Scholar 

  14. Inbar Y (2007) New standards for treated wastewater reuse in Israel. In: Zaidi MK (ed) Wastewater reuse – risk assessment, decision making and environmental security. Springer, Dordrecht, pp 291–296. doi:10.1007/978-1-4020-6027-4_28

    Chapter  Google Scholar 

  15. Frost LS, Leplae R, Summers A et al (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  Google Scholar 

  16. Thomas C, Nielsen K (2005) Mechanisms and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    Article  CAS  Google Scholar 

  17. Bennet P (2008) Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J of Pharmacol 153:S347–S357

    Article  CAS  Google Scholar 

  18. McArthur J (ed) (2006) Microbial ecology: an evolutionary approach. Elsevier, Amsterdam

    Google Scholar 

  19. Akiyama T, Asfahl KL, Savin MC (2010) Broad-host-range plasmids in treated wastewater effluent and receiving streams. J Environ Qual 39:2211–2215

    Article  CAS  Google Scholar 

  20. Binh C, Heuer H, Kaupenjohann M et al (2008) Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37

    Article  CAS  Google Scholar 

  21. Byrne-Bailey G, Gaze H, Zhang L et al (2011) Integron prevalence and diversity in manured soil. Appl Environ Microbiol 77:684–687

    Article  CAS  Google Scholar 

  22. Berg D, Berg C (1983) The prokaryotic transposable element Tn5. Nat Biotechnol 1:417–435

    Article  Google Scholar 

  23. Merlin C, Bonot S, Courtois S et al (2011) Persistence and dissemination of the multiple-antibiotic-resistance plasmid pB10 in the microbial communities of wastewater sludge microcosms. Water Res 45:2897–2905

    Article  CAS  Google Scholar 

  24. Liebert C, Hall R, Summers A (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol R 63:507–522

    CAS  Google Scholar 

  25. Nordmann P, Dortet L, Poirel L (2012) Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 18:263–272

    Article  CAS  Google Scholar 

  26. Smet A, Van Nieuwerburgh F, Vandekerckhove T et al (2012) Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences. Plos one 5:1–8

    Google Scholar 

  27. Zhu YG, Johnson TA, Su JQ et al (2012) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110:3435–3440

    Article  Google Scholar 

  28. Koczura R, Mokracka J, Jabłońska L et al (2012) Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water. Sci Total Environ 414:680–685

    Article  CAS  Google Scholar 

  29. Stalder T, Barraud O, Casellas M et al (2012) Integron involvement in environmental spread of antibiotic resistance. Front Microbiol. doi:10.3389/fmicb.2012.00119

    Google Scholar 

  30. Cambray G, Guerout A, Mazel D (2010) Integrons. Annu Rev Genet 44:141–166

    Article  CAS  Google Scholar 

  31. Gu B, Tong M, Zhao W (2007) Prevalence and characterization of class I integrons among Pseudomonas aeruginosa and Acinetobacter baumannii isolates from patients in Nanjing, China. J Clin Microbiol 45:241–243

    Article  CAS  Google Scholar 

  32. Gillings M, Boucher Y, Labbate M (2008) The evolution of class 1 integrons and the rise of antibiotic resistance. J bacteriol 190:5095–5100

    Article  CAS  Google Scholar 

  33. Gaze WH, Zhang L, Abdouslam NA et al (2011) Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. ISME J 5:1253–1261

    Article  CAS  Google Scholar 

  34. Nardelli M, Scalzo P, Ramirez M, Quiroga M, Cassini M, Centron D (2012) Class 1 integrons in environments with different degrees of urbanization. Plos One 7:e39223

    Article  CAS  Google Scholar 

  35. Saeki K, Ihyo Y, Sakai M et al (2011) Strong adsorption of DNA molecules on humic acids. Environ Chem Lett 9:505–509

    Google Scholar 

  36. Domingues S, Harms K, Fricke WF et al (2012) Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. PLoS Pathog 8:e1002837

    Article  CAS  Google Scholar 

  37. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Article  CAS  Google Scholar 

  38. EUCAST (2013) The EUCAST register. http://www.eucast.org/. Accessed 1 Feb 2014.8

  39. Clinical and Laboratory Standards Institute (2014) The CLSI register. http://www.clsi.org/. Accessed 1 Feb 2014

  40. Willems E, Verhaegen J, Magerman K et al (2013) Towards a phenotypic screening strategy for emerging beta-lactamases in Gram-negative bacilli. Int J Antimicrob Agents 41:99–109

    Article  CAS  Google Scholar 

  41. Pace NR, Stahl DA, Lane DJ et al (1986) Analyzing natural microbial populations by rRNA sequences. ASM News 51:4–12

    Google Scholar 

  42. Wilson L, Sharp P (2006) Enterobacterial repetitive intergenic consensus (ERIC) sequences in Escherichia coli: evolution and implications for ERIC-PCR. Mol Biol Evol 23:1156–1168

    Article  CAS  Google Scholar 

  43. Maiden M (2006) Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588

    Article  CAS  Google Scholar 

  44. Bert F, Branger C, Lambert-Zechovsky N (2002) Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. JAC 50:11–18

    CAS  Google Scholar 

  45. Pomba C, Mendonca N, Costa M et al (2006) Improved multiplex PCR method for the rapid detection of β-lactamase genes in Escherichia coli of animal origin. Diagn Microbiol Infect Dis 56:103–106

    Article  CAS  Google Scholar 

  46. Smalla K, Heuer H, Gotz A et al (2000) Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. App Environ Microbiol 66:4854–4862

    Article  CAS  Google Scholar 

  47. Volkmann H, Schwartz T, Bischof P et al (2004) Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J Microbiol Meth 56:277–286

    Article  CAS  Google Scholar 

  48. Hudson ME (2008) Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol Ecol Resour 8:3–17

    Article  CAS  Google Scholar 

  49. Johnning A, Moore ER, Svensson-Stadler L et al (2013) Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production. Appl Environ Microbiol 79:7256–7263

    Article  CAS  Google Scholar 

  50. Wibberg D, Szczepanowski R, Eikmeyer F et al (2013) The IncF plasmid pRSB225 isolated from a municipal wastewater treatment plant's on-site preflooder combining antibiotic resistance and putative virulence functions is highly related to virulence plasmids identified in pathogenic E. coli isolates. Plasmid 69:127–137

    Article  CAS  Google Scholar 

  51. Auerbach E, Seyfried E, McMahon K (2007) Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res 41:1143–1151

    Article  CAS  Google Scholar 

  52. Bockelmann U, Dorries H, Ayuso-Gabella MN et al (2009) Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl Environ Microbiol 75:154–163

    Article  CAS  Google Scholar 

  53. Gao P, Munir M, Xagoraraki I (2012) Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci Total Environ 421:173–183

    Article  CAS  Google Scholar 

  54. Marti E, Jofre J, Balcazar JL (2013) Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PLoS ONE 8:e78906

    Article  CAS  Google Scholar 

  55. QIAGEN (2013) Microbial DNA qPCR arrays. http://www.qiagen.com/products/catalog/assay-technologies/real-time-pcr-and-rt-pcr-reagents/microbial-dna-qpcr-arrays?catno=BAID-1901Z. Accessed 4 Mar 2014

  56. Zhang T, Zhang XX, Ye L (2011) Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS ONE 6:e26041

    Article  CAS  Google Scholar 

  57. Uyaguari MI, Fichot EB, Scott GI et al (2011) Characterization and quantitation of a novel beta-lactamase gene found in a wastewater treatment facility and the surrounding coastal ecosystem. Appl Environ Microbiol 77:8226–8233

    Article  CAS  Google Scholar 

  58. Schmieder R, Edwards R (2012) Insights into antibiotic resistance through metagenomic approaches. Future Microbiol 7:73–89

    Article  CAS  Google Scholar 

  59. Tiirik K, Nolvak H, Oopkaup K et al (2014) Characterization of bacterioplankton community and its antibiotic resistance genes in the Baltic Sea. Biotechnol Appl Biochem 61:23–32

    Article  CAS  Google Scholar 

  60. Wang Z, Zhang X, Huang K et al (2013) Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant. Plos one 8:1–9

    Google Scholar 

  61. Boczek LA, Rice EW, Johnston B et al (2007) Occurrence of antibiotic-resistant uropathogenic Escherichia coli clonal group A in wastewater effluents. Appl Environ Microbiol 73:4180–4184

    Article  CAS  Google Scholar 

  62. Ferreira da Silva M, Tiago I, Verissimo A et al (2006) Antibiotic resistance of enterococci and related bacteria in an urban WWTP. FEMS Microbiol Ecol 55:322–329

    Article  CAS  Google Scholar 

  63. Galvin S, Boyle F, Hickey P et al (2010) Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. App Environ Microbiol 76:4772–4779

    Article  CAS  Google Scholar 

  64. Korzeniewska E, Korzeniewska A, Harnisz M (2013) Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotox Environ Safe 91:96–102

    Article  CAS  Google Scholar 

  65. Korzeniewska E, Harnisz M (2013) Extended-spectrum β-lactamase (ESBL)-positive Enterobacteriaceae in municipal sewage and their emission to the environment. J Environ Manage 128:904–911

    Article  CAS  Google Scholar 

  66. Luczkiewicz A, Jankowska K et al (2010) Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Res 44:5089–5097

    Article  CAS  Google Scholar 

  67. Kaplan E, Ofek M, Jurkevitch E et al (2013) Characterization of fluoroquinolone resistance and qnr diversity in Enterobacteriaceae from municipal biosolids. Front Microbiol 4:144

    Article  Google Scholar 

  68. Figueira V, Vaz-Moreira I, Silva M et al (2011) Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water Res 45:5599–5611

    Article  CAS  Google Scholar 

  69. Ma L, Zhang X, Cheng S et al (2011) Occurrence, abundance and elimination of class 1 integrons in one municipal sewage treatment plant. Ecotoxicology 20:968–973

    Article  CAS  Google Scholar 

  70. Szczepanowski R, Bekel T, Goesmann A et al (2008) Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. J Biotechnol 136:54–64

    Article  CAS  Google Scholar 

  71. Szczepanowski R, Linke B, Krahn I et al (2009) Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology-Sgm 155:2306–2319

    Article  CAS  Google Scholar 

  72. Iwane T, Urase T, Yamamoto K (2001) Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci Technol 43:91–99

    CAS  Google Scholar 

  73. Kim S, Jensen JN, Aga DS et al (2007) Tetracycline as a selector for resistant bacteria in activated sludge. Chemosphere 66:1643–1651

    Article  CAS  Google Scholar 

  74. Martins da Costa P, Vaz-Pires P, Bernardo F (2006) Antibiotic resistance of Enterococcus spp. isolated from wastewater and sludge of poultry slaughterhouses. J Environ Sci Health B 41:1393–1403

    Article  CAS  Google Scholar 

  75. Parsley LC, Consuegra EJ, Kakirde KS et al (2010) Identification of diverse antimicrobial resistance determinants carried on bacterial, plasmid, or viral metagenomes from an activated sludge microbial assemblage. App Environ Microbiol 76:3753–3757

    Article  CAS  Google Scholar 

  76. Kim S, Yun Z, Ha U et al (2013) Transfer of antibiotic resistance plasmids in pure and activated sludge cultures in the presence of environmentally representative micro-contaminant concentrations. Sci Total Environ 468–469:813–820

    Google Scholar 

  77. Droge M, Puhler A, Selbitschka W (2000) Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Genet 263:471–482

    Article  CAS  Google Scholar 

  78. EPA (1999) Wastewater technology Fact Sheet. htpp://water.epa.gov/scitech.wastetech/. Accessed 1 Feb 2014

    Google Scholar 

  79. Czekalski N, Berthold T, Caucci S et al (2012) Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into lake Geneva, Switzerland. Front Microbiol 3:106

    Article  Google Scholar 

  80. LaPara TM, Burch TR, Mcnamara PJ et al (2011) Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior harbor. Environ Sci Technol 45:9543–9549

    Article  CAS  Google Scholar 

  81. Oulton RL, Kohn T, Cwiertny DM (2010) Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management. J Environ Monitor 12:1956–1978

    Article  CAS  Google Scholar 

  82. Pruden A, Larsson DG, Amezquita A et al (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121:878–885

    Article  Google Scholar 

  83. Huang JJ, Hu HY, Tang F et al (2011) Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant. Water Res 45:2775–2781

    Article  CAS  Google Scholar 

  84. Su H-C, Ying G-G, He L-Y et al (2014) Antibiotic resistance, plasmid-mediated quinolone resistance (PMQR) genes and ampC gene in two typical municipal wastewater treatment plants. ESPI 16:324–332

    CAS  Google Scholar 

  85. Guo M-T, Yuan Q-B, Yang J (2013) Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant. Water Res 47:6388–6394

    Article  CAS  Google Scholar 

  86. Mckinney CW, Pruden A (2012) Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol 46:13393–13400

    Article  CAS  Google Scholar 

  87. Rizzo L, Della Sala A, Fiorentino A et al (2014) Disinfection of urban wastewater by solar driven and UV lamp-TiO2 photocatalysis: effect on a multi drug resistant E. coli strain. Global NEST J 16:457–464

    CAS  Google Scholar 

  88. Paraskeva P, Graham N (2002) Ozonation of municipal wastewater effluents. Water Environ Res 74:569–581

    Article  CAS  Google Scholar 

  89. Zamudio-Perez TL, Chairez I (2014) Two-stage optimization of coliforms, helminth eggs, and organic matter removals from municipal wastewater by ozonation based on the response surface method. Ozone-Scie Eng 36:570–581

    Article  CAS  Google Scholar 

  90. Hong PY, Yannarell A, DAI Q et al (2013) Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. App Environ Microbiol 79:2620–2629

    Article  CAS  Google Scholar 

  91. Crecchio C, Stotzky G (1998) Binding of DNA on humic acids: Effect on transformation of Bacillus subtilis and resistance to DNase. Soil Biol Biochem 30:1061–1067

    Article  CAS  Google Scholar 

  92. Diehl D, LaPara T (2010) Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewaters solids. Environ Sci Technol 44:9128–9133

    Article  CAS  Google Scholar 

  93. Gosh S, Ramsden S, LaPara T (2009) The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants. App Microbiol Biotech 84:791–796

    Article  CAS  Google Scholar 

  94. Burch T, Sadowsky M, LaPara T (2013) Air-drying beds reduce the quantities of antibiotic resistance genes and class 1 integrons in residual municipal wastewater solids. Environ Sci Technol 47:9965–9971

    Article  CAS  Google Scholar 

  95. Breazeal M, Novak J, Vikesland P et al (2013) Effect of wastewater colloids on membrane removal of antibiotic resistance genes. Water Res 47:130–140

    Article  CAS  Google Scholar 

  96. Yang D, Wang J, Qiu Z et al (2013) Horizontal transfer of antibiotic resistance genes in a membrane bioreactor. J Biotechnol 167:441–447

    Article  CAS  Google Scholar 

  97. Burch T, Sadowsky M, LaPara T (2013) Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids. Front Microbiol 4:1–9

    Article  Google Scholar 

  98. Chen H, Zhang M (2013) Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China. Environ Sci Technol 47:8157−8163)

    Google Scholar 

  99. Pruden A, Pei RT, Storteboom H et al (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40:7445–7450

    Article  CAS  Google Scholar 

  100. Slekovec C, Plantin J, Cholley P et al (2012) Tracking down antibiotic-resistant Pseudomonas aeruginosa isolates in a wastewater network. PLoS One 7:1–7

    Article  CAS  Google Scholar 

  101. Kristiansson E, Fick J, Janzon A et al (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One 6:1–7

    Article  CAS  Google Scholar 

  102. Forsberg KJ, Patel S, Gibson MK et al (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature 509:612–616

    Article  CAS  Google Scholar 

  103. Forsberg KJ, Reyes A, Wang B et al (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111

    Article  CAS  Google Scholar 

  104. D’costa VM, Mcgrann KM, Hughes DW et al (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  Google Scholar 

  105. McLain J, Williams C (2014) Sustainability of water reclamation: long-term recharge with reclaimed wastewater does not enhance antibiotic resistance in sediment bacteria. Sustainability 6:1313–1327

    Article  CAS  Google Scholar 

  106. EPA (2009) Targeted national sewage sludge survey sampling and analysis technical report. In: Water USEPAO (ed) Use and disposal of biosolids. EPA, Washington, DC

    Google Scholar 

  107. Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45:681–693

    Article  CAS  Google Scholar 

  108. Munir M, Xagoraraki I (2011) Levels of antibiotic resistance genes in manure, biosolids, and fertilized soil. J Environ Qual 40:248–255

    Article  CAS  Google Scholar 

  109. Zhang X, Zhang T, Zhang M et al (2009) Characterization and quantification of class 1 integrons and associated gene cassettes in sewage treatment plants. App Microbiol Biotech 82:1169–1177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddie Cytryn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gatica, J., Kaplan, E., Cytryn, E. (2015). Antibiotic Resistance Elements in Wastewater Treatment Plants: Scope and Potential Impacts. In: Fatta-Kassinos, D., Dionysiou, D., Kümmerer, K. (eds) Wastewater Reuse and Current Challenges . The Handbook of Environmental Chemistry, vol 44. Springer, Cham. https://doi.org/10.1007/698_2015_361

Download citation

Publish with us

Policies and ethics