Skip to main content

Advanced Nanotechnology Approaches as Emerging Tools in Cellular-Based Technologies

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 18

Abstract

Stem cells are valuable tools in regenerative medicine because they can generate a wide variety of cell types and tissues that can be used to treat or replace damaged tissues and organs. However, challenges related to the application of stem cells in the scope of regenerative medicine have urged scientists to utilize nanomedicine as a prerequisite to circumvent some of these hurdles. Nanomedicine plays a crucial role in this process and manipulates surface biology, the fate of stem cells, and biomaterials. Many attempts have been made to modify cellular behavior and improve their regenerative ability using nano-based strategies. Notably, nanotechnology applications in regenerative medicine and cellular therapies are controversial because of ethical and legal considerations. Therefore, this review describes nanotechnology in cell-based applications and focuses on newly proposed nano-based approaches. Cutting-edge strategies to engineer biological tissues and the ethical, legal, and social considerations of nanotechnology in regenerative nanomedicine applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

Ab:

Antibody

AuNP:

Gold nanoparticle

BM:

Bone marrow

CD:

Cluster of differentiation

CLNP:

Cationic lipid nanoparticle

CNT:

Carbon nanotube

CPP:

Cell-penetrating peptide

DDS:

Drug delivery system

Dex:

Dexamethasone

ECM:

Extracellular matrix

EMA:

European Medicines Agency

ESC:

Embryonic stem cell

EU:

European Union

EV:

Extracellular vesicle

FDA:

Food and Drug Administration

FITC:

Fluorescein isothiocyanate

GAG:

Glycosaminoglycan

GF:

Growth factor

GO:

Graphene oxide

hASC:

Human adipose stem cell

hESC:

Human embryonic stem cell

hMSC:

Human mesenchymal stromal cell

HA:

Hyaluronic acid

HIV-1 Tat:

Human immunodeficiency virus-1 trans-activating regulatory protein

iPSC:

Induced pluripotent stem cell

IVF:

In vitro fertilization

kPa:

Kilopascal

MNP:

Magnetic nanoparticle

MPI:

Magnetic particle imaging

MRI:

Magnetic resonance imaging

MACS:

Magnetic-activated cell sorting

MSC:

Mesenchymal stromal cell

NGF:

Nerve growth factor

NKT:

Natural killer T cell

NP:

Nanoparticle

PA:

Photoacoustic

PBAE:

Poly(β-amino ester)

PCL:

(poly-É›-caprolactone)

PEG:

Polyethylene glycol

PEI:

Polyethyleneimine

PET:

Positron emission tomography

PGA:

Polyglycolic acid

PLA:

Polylactic acid

PNIPAM:

Poly-N-Isopropylacrylamide

PVA:

Polyvinyl alcohol

PVP:

Polyvinylpyrrolidone

QD:

Quantum dot

RM:

Regenerative medicine

siRNA:

Small interfering RNA

SLNP:

Solid lipid nanoparticle

SPION:

Superparamagnetic iron oxide nanoparticle

TDN:

Tetrahedral DNA nanostructure

VEGF:

Vascular endothelial growth factor

References

  • Adibfar A et al (2018) VEGF delivery by smart polymeric PNIPAM nanoparticles affects both osteogenic and angiogenic capacities of human bone marrow stem cells. Mater Sci Eng C 93:790–799

    Article  CAS  Google Scholar 

  • Afshar L et al (2020) Ethics of research on stem cells and regenerative medicine: ethical guidelines in the Islamic Republic of Iran. Stem Cell Res Ther 11(1):396

    Article  PubMed  PubMed Central  Google Scholar 

  • Allhoff F, Lin P (2008) Nanotechnology & society: current and emerging ethical issues. Springer

    Google Scholar 

  • Alvarez-Erviti L et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345

    Article  CAS  PubMed  Google Scholar 

  • Ansari S et al (2019) Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials (Basel) 12(3)

    Google Scholar 

  • Arisaka Y et al (2016) A heparin-modified thermoresponsive surface with heparin-binding epidermal growth factor-like growth factor for maintaining hepatic functions in vitro and harvesting hepatocyte sheets. Regen Therap 3:97–106

    Article  Google Scholar 

  • Aswendt M et al (2015) Novel bimodal iron oxide particles for efficient tracking of human neural stem cells in vivo. Nanomedicine (Lond) 10(16):2499–2512

    Article  CAS  PubMed  Google Scholar 

  • Baei P et al (2020) Electrically conductive materials for in vitro cardiac microtissue engineering. J Biomed Mater Res A 108(5):1203–1213

    Article  CAS  PubMed  Google Scholar 

  • Bakalova R et al (2007) Designing quantum-dot probes. Nat Photonics 1(9):487–489

    Article  CAS  Google Scholar 

  • Barrow M et al (2016) Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast. Contrast Media Mol Imaging 11(5):362–370

    Article  CAS  PubMed  Google Scholar 

  • Bhat R, Bissell MJ (2014) Of plasticity and specificity: dialectics of the microenvironment and macroenvironment and the organ phenotype. Wiley Interdiscip Rev Dev Biol 3(2):147–163

    Article  CAS  PubMed  Google Scholar 

  • Bondi ML et al (2007) Novel cationic solid-lipid nanoparticles as non-viral vectors for gene delivery. J Drug Target 15(4):295–301

    Article  CAS  PubMed  Google Scholar 

  • Boulaiz H et al (2011) Nanomedicine: application areas and development prospects. Int J Mol Sci 12(5):3303–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulte JW (2009) In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol 193(2):314–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulte JW, Kraitchman DL (2004a) Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol 5(6):567–584

    Article  CAS  PubMed  Google Scholar 

  • Bulte JW, Kraitchman DL (2004b) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499

    Article  CAS  PubMed  Google Scholar 

  • Bulte JW et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci U S A 96(26):15256–15261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carola Esposito C et al (2017) 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering. J Polym Eng 37(8):741–746

    Article  Google Scholar 

  • Chan S, Harris J (2008) Adam’s fibroblast? The (pluri)potential of iPCs. J Med Ethics 34(2):64–66

    Article  PubMed  Google Scholar 

  • Chemaly ER et al (2005) Tracking stem cells in the cardiovascular system. Trends Cardiovasc Med 15(8):297–302

    Article  CAS  PubMed  Google Scholar 

  • Choi SM et al (2013) Porous three-dimensional PVA/gelatin sponge for skin tissue engineering. Int J Polym Mater Polym Biomater 62(7):384–389

    Article  CAS  Google Scholar 

  • Choi YJ et al (2017) 3D cell printed tissue analogues: a new platform for theranostics. Theranostics 7(12):3118–3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicha I et al (2018) From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc Res 114(13):1714–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corot C et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504

    Article  CAS  PubMed  Google Scholar 

  • Cromer Berman SM et al (2013) Cell motility of neural stem cells is reduced after SPIO-labeling, which is mitigated after exocytosis. Magn Reson Med 69(1):255–262

    Article  CAS  PubMed  Google Scholar 

  • Donnelly H, Salmeron-Sanchez M, Dalby MJ (2018) Designing stem cell niches for differentiation and self-renewal. J R Soc Interface 15(145)

    Google Scholar 

  • Dosta P, Ramos V, Borrós S (2018) Stable and efficient generation of poly(β-amino ester)s for RNAi delivery. Mol Syst Design Eng 3(4):677–689

    Article  CAS  Google Scholar 

  • Duffy N et al (2020) Investigation of nanostar-labeled mesenchymal stem cells for in vivo cell tracking in osteoarthritis using optoacoustic imaging. Osteoarthr Cartil 28:S302

    Article  Google Scholar 

  • Engel E et al (2008) Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol 26(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Fahy G (2002) Dr. William Haseltine on regenerative medicine, aging andhuman immortality. Life Ext 8(7):58

    Google Scholar 

  • Gao Y et al (2016) Highly branched poly(beta-amino esters) for non-viral gene delivery: high transfection efficiency and low toxicity achieved by increasing molecular weight. Biomacromolecules 17(11):3640–3647

    Article  CAS  PubMed  Google Scholar 

  • Gilbert PM et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorzkiewicz M et al (2020) Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: specific cytotoxicity to cancer cells and transfection in vitro. Bioorg Chem 95:103504

    Article  CAS  PubMed  Google Scholar 

  • Grady ST et al (2019) Persistence of fluorescent nanoparticle-labelled bone marrow mesenchymal stem cells in vitro and after intra-articular injection. J Tissue Eng Regen Med 13(2):191–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W et al (2007) Measuring cell motility using quantum dot probes. Methods Mol Biol 374:125–131

    PubMed  Google Scholar 

  • Gu L et al (2018) Stem cell tracking using effective self-assembled peptide-modified superparamagnetic nanoparticles. Nanoscale 10(34):15967–15979

    Article  CAS  PubMed  Google Scholar 

  • Guldris N et al (2017) Magnetite nanoparticles for stem cell labeling with high efficiency and long-term in vivo tracking. Bioconjug Chem 28(2):362–370

    Article  CAS  PubMed  Google Scholar 

  • Halamoda-Kenzaoui B et al (2019) Mapping of the available standards against the regulatory needs for nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(1):e1531

    Article  PubMed  Google Scholar 

  • Han M et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19(7):631–635

    Article  CAS  PubMed  Google Scholar 

  • Han YL et al (2014) Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discov Today 19(6):763–773

    Article  PubMed  Google Scholar 

  • Haring AP, Sontheimer H, Johnson BN (2017) Microphysiological human brain and neural systems-on-a-chip: potential alternatives to small animal models and emerging platforms for drug discovery and personalized medicine. Stem Cell Rev Rep 13(3):381–406

    Article  CAS  PubMed  Google Scholar 

  • Hasan A et al (2018) Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine 13:5637–5655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino A et al (2005) Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiol Immunol 49(5):461–470

    Article  CAS  PubMed  Google Scholar 

  • Hsieh FY, Lin HH, Hsu SH (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57

    Article  CAS  PubMed  Google Scholar 

  • Huang X et al (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed Engl 45(31):5140–5143

    Article  CAS  PubMed  Google Scholar 

  • Huang TQ et al (2014) 3D printing of biomimetic microstructures for cancer cell migration. Biomed Microdevices 16(1):127–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Z et al (2015) Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium. Int J Nanomedicine 10:1679–1690

    CAS  PubMed Central  Google Scholar 

  • Jahangir S et al (2018) 3D-porous beta-tricalcium phosphate-alginate-gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects. J Mater Sci Mater Med 30(1):1

    Article  PubMed  Google Scholar 

  • Jahed V et al (2020) Quantum dots-βcyclodextrin-histidine labeled human adipose stem cells-laden chitosan hydrogel for bone tissue engineering. Nanomedicine 27:102217

    Article  CAS  PubMed  Google Scholar 

  • Kami D et al (2014) Pleiotropic functions of magnetic nanoparticles for ex vivo gene transfer. Nanomedicine 10(6):1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Kang LH et al (2017) Optimizing photo-encapsulation viability of heart valve cell types in 3D printable composite hydrogels. Ann Biomed Eng 45(2):360–377

    Article  PubMed  Google Scholar 

  • Kania G et al (2018) Uptake and bioreactivity of charged chitosan-coated superparamagnetic nanoparticles as promising contrast agents for magnetic resonance imaging. Nanomedicine 14(1):131–140

    Article  CAS  PubMed  Google Scholar 

  • Kelly BJSRA (2010) Nanomedicines: regulatory challenges and risks ahead

    Google Scholar 

  • Khang D et al (2010) Nanotechnology for regenerative medicine. Biomed Microdevices 12(4):575–587

    Article  CAS  PubMed  Google Scholar 

  • Kim E et al (2015a) Discovery, understanding, and bioapplication of organic fluorophore: a case study with an indolizine-based novel fluorophore, Seoul-Fluor. Acc Chem Res 48(3):538–547

    Article  CAS  PubMed  Google Scholar 

  • Kim H et al (2015b) VEGF therapeutic gene delivery using dendrimer type bio-reducible polymer into human mesenchymal stem cells (hMSCs). J Control Release 220(Pt A):222–228

    Article  CAS  PubMed  Google Scholar 

  • Kington RS, M.D., Ph.D., Acting Director, NIH. National Institutes of Health Guidelines for Human Stem Cell Research. 2009 [cited 2019 11/09/2019]; Available from: https://stemcells.nih.gov/policy/2009-guidelines.htm

  • Kirschner CM, Anseth KS (2013) Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater 61(3):931–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotobuki N et al (2005) Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials 26(7):779–785

    Article  CAS  PubMed  Google Scholar 

  • Kozielski KL et al (2014) Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano 8(4):3232–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundrotas G et al (2019) Uptake and distribution of carboxylated quantum dots in human mesenchymal stem cells: cell growing density matters. J Nanobiotechnol 17(1):39

    Article  Google Scholar 

  • Lassenberger A et al (2017) Individually stabilized, superparamagnetic nanoparticles with controlled shell and size leading to exceptional stealth properties and high relaxivities. ACS Appl Mater Interfaces 9(4):3343–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KB et al (2002) Protein nanoarrays generated by dip-pen nanolithography. Science 295(5560):1702–1705

    Article  CAS  PubMed  Google Scholar 

  • Lei Y et al (2008) Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjug Chem 19(2):421–427

    Article  CAS  PubMed  Google Scholar 

  • Lewin M et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2013) 3D graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release. Adv Mater 25(46):6737–6743

    Article  CAS  PubMed  Google Scholar 

  • Limeres MJ et al (2019) Development and characterization of an improved formulation of cholesteryl oleate-loaded cationic solid-lipid nanoparticles as an efficient non-viral gene delivery system. Colloids Surf B: Biointerfaces 184:110533

    Article  CAS  PubMed  Google Scholar 

  • Liu H et al (2015) CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats. Nanoscale Res Lett 10(1):959

    Article  PubMed  Google Scholar 

  • Liu F et al (2016) In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@SiO2 nanoprobe modified with anti-mesothelin antibody. Int J Nanomedicine 11:2195–2207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M et al (2018) Dual-modal photoacoustic and magnetic resonance tracking of tendon stem cells with PLGA/iron oxide microparticles in vitro. PLoS One 13(4):e0193362

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60(2):184–198

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Wang Y, Li H (2020) Applications of extracellular vesicles in tissue regeneration. Biomicrofluidics 14(1):011501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabrouk M et al (2019) Nanoparticle- and nanoporous-membrane-mediated delivery of therapeutics. Pharmaceutics 11(6)

    Google Scholar 

  • Mahajan S et al (2013) Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging. Nanotechnology 24(1):015603

    Article  PubMed  Google Scholar 

  • Majidi S et al (2016) Current methods for synthesis of magnetic nanoparticles. Artif Cells Nanomed Biotechnol 44(2):722–734

    Article  CAS  PubMed  Google Scholar 

  • Markides H et al (2019) Ex vivo MRI cell tracking of autologous mesenchymal stromal cells in an ovine osteochondral defect model. Stem Cell Res Ther 10(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meola A et al (2018) Gold nanoparticles for brain tumor imaging: a systematic review. Front Neurol 9:328

    Article  PubMed  PubMed Central  Google Scholar 

  • Molaabasi F et al (2018) Shape-controlled synthesis of luminescent hemoglobin capped hollow porous platinum nanoclusters and their application to catalytic oxygen reduction and cancer imaging. Sci Rep 8(1):14507

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885

    Article  CAS  PubMed  Google Scholar 

  • Munn D (2001) Moral issues of human embryo research. Science 293(5528):211

    Article  CAS  PubMed  Google Scholar 

  • Musyanovych A, Landfester K (2014) Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol Biosci 14(4):458–477

    Article  CAS  PubMed  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8):762–798

    Article  CAS  Google Scholar 

  • Najafi-Hajivar S et al (2016) Overview on experimental models of interactions between nanoparticles and the immune system. Biomed Pharmacother 83:1365–1378

    Article  CAS  PubMed  Google Scholar 

  • Naqvi S et al (2009) Impact of magnetic nanoparticles in biomedical applications. Recent Pat Drug Deliv Formul 3(2):153–161

    Article  CAS  PubMed  Google Scholar 

  • Nassireslami E, Ajdarzade M (2018) Gold coated superparamagnetic iron oxide nanoparticles as effective nanoparticles to eradicate breast cancer cells via photothermal therapy. Adv Pharm Bull 8(2):201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nejati E et al (2009) Needle-like nano hydroxyapatite/poly(l-lactide acid) composite scaffold for bone tissue engineering application. Mater Sci Eng C 29(3):942–949

    Article  CAS  Google Scholar 

  • Nguyen LTB et al (2019) Development of thermo-responsive polycaprolactone macrocarriers conjugated with Poly(N-isopropyl acrylamide) for cell culture. Sci Rep 9(1):3477

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J et al (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Hwang SR, Yoon IS (2017) Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 22(8)

    Google Scholar 

  • Park GK et al (2019) Lysosome-targeted bioprobes for sequential cell tracking from macroscopic to microscopic scales. Adv Mater 31(14):e1806216

    Article  PubMed  PubMed Central  Google Scholar 

  • Patra JK et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71

    Article  Google Scholar 

  • Pecot T et al (2015) Background fluorescence estimation and vesicle segmentation in live cell imaging with conditional random fields. IEEE Trans Image Process 24(2):667–680

    Article  PubMed  Google Scholar 

  • Petreaca M, Martins-Green M (2019) Chapter 2: Cell–extracellular matrix interactions in repair and regeneration. In: Atala A et al (eds) Principles of regenerative medicine, 3rd edn. Academic Press, Boston, pp 15–35

    Chapter  Google Scholar 

  • Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35(4):851–858

    Article  CAS  PubMed  Google Scholar 

  • Pickard MR et al (2015) Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes. J Funct Biomater 6(2):259–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramani K et al (1998) Site-specific gene delivery in vivo through engineered Sendai viral envelopes. Proc Natl Acad Sci U S A 95(20):11886–11890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Gomez M, Seiz EG, Martinez-Serrano A (2015) Optimization of the magnetic labeling of human neural stem cells and MRI visualization in the hemiparkinsonian rat brain. J Nanobiotechnol 13:20

    Article  Google Scholar 

  • Riazifar M et al (2019) Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano 13(6):6670–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards D et al (2017) 3D bioprinting for vascularized tissue fabrication. Ann Biomed Eng 45(1):132–147

    Article  PubMed  Google Scholar 

  • Rosen AB et al (2007) Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells 25(8):2128–2138

    Article  CAS  PubMed  Google Scholar 

  • Salaita K, Wang Y, Mirkin CA (2007) Applications of dip-pen nanolithography. Nat Nanotechnol 2(3):145–155

    Article  CAS  PubMed  Google Scholar 

  • Santoso MR, Yang PC (2016) Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction. Stem Cells Int 2016:4198790

    Article  PubMed  PubMed Central  Google Scholar 

  • Servant A et al (2016) Gadolinium-functionalised multi-walled carbon nanotubes as a T1 contrast agent for MRI cell labelling and tracking. Carbon 97:126–133

    Article  CAS  Google Scholar 

  • Slotkin JR et al (2007) In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn 236(12):3393–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares S et al (2018) Nanomedicine: principles, properties, and regulatory issues. Front Chem 6:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Soleymani-Goloujeh M et al (2017) Effects of N-terminal and C-terminal modification on cytotoxicity and cellular uptake of amphiphilic cell penetrating peptides. Artif Cells Nanomed Biotechnol:1–13

    Google Scholar 

  • Sykova E, Jendelova P (2007) Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ 14(7):1336–1342

    Article  CAS  PubMed  Google Scholar 

  • Tran KTM, Nguyen TD (2017) Lithography-based methods to manufacture biomaterials at small scales. J Sci Adv Mater Dev 2(1):1–14

    Google Scholar 

  • Traphagen S, Yelick PC (2009) Reclaiming a natural beauty: whole-organ engineering with natural extracellular materials. Regen Med 4(5):747–758

    Article  PubMed  Google Scholar 

  • Tutkun L et al (2017) Anti-epidermal growth factor receptor aptamer and antibody conjugated SPIONs targeted to breast cancer cells: a comparative approach. J Nanosci Nanotechnol 17(3):1681–1697

    Article  CAS  Google Scholar 

  • Unni M et al (2020) Engineering magnetic nanoparticles and their integration with microfluidics for cell isolation. J Colloid Interface Sci 564:204–215

    Article  CAS  PubMed  Google Scholar 

  • Unterweger H et al (2018) Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. Int J Nanomedicine 13:1899–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2014) A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS One 9(7):e102886

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H et al (2017) A nano-in-micro system for enhanced stem cell therapy of ischemic diseases. ACS Cent Sci 3(8):875–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Liu Z, Lan X (2019) Quantum dot-based simultaneous multicolor imaging. Mol Imaging Biol

    Google Scholar 

  • Wang Z et al (2020) Global trends of organoid and organ-on-a-chip in the past decade: a bibliometric and comparative study. Tissue Eng Part A 26(11-12):656–671

    Article  PubMed  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Pisignano D, Xia Y (2020) Maneuvering the migration and differentiation of stem cells with electrospun nanofibers. Adv Sci (Weinh) 7(15):2000735

    Article  CAS  PubMed  Google Scholar 

  • Yang J et al (2020) Therapeutic effects of simultaneous delivery of nerve growth factor mRNA and protein via exosomes on cerebral ischemia. Mol Therapy Nucleic Acid 21:512–522

    Article  CAS  Google Scholar 

  • Yoo MK et al (2012) Folate-PEG-superparamagnetic iron oxide nanoparticles for lung cancer imaging. Acta Biomater 8(8):3005–3013

    Article  CAS  PubMed  Google Scholar 

  • Yu S-M et al (2016) Bio-identity and fate of albumin-coated SPIONs evaluated in cells and by the C. elegans model. Acta Biomater 43:348–357

    Article  CAS  PubMed  Google Scholar 

  • Yurie H et al (2017) The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS One 12(2):e0171448

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Austin RH (2012) Applications of microfluidics in stem cell biology. Bionanoscience 2(4):277–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang SJ, Wu JC (2007) Comparison of imaging techniques for tracking cardiac stem cell therapy. J Nucl Med 48(12):1916–1919

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2019) Silver-quantum-dot-modified MoO3 and MnO2 paper-like freestanding films for flexible solid-state asymmetric supercapacitors. Small 15(13):e1805235

    Article  PubMed  Google Scholar 

  • Zheng B et al (2016) Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 6(3):291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y et al (2019) Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation. Analyst 145(1):257–267

    Article  PubMed  Google Scholar 

  • Zhuang J et al (2020) Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy. Nucleic Acids Res 48(16):8870–8882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samaneh Hosseini or Mohamadreza Baghaban Eslaminejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soleymani-Goloujeh, M., Hosseini, S., Baghaban Eslaminejad, M. (2022). Advanced Nanotechnology Approaches as Emerging Tools in Cellular-Based Technologies. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 18. Advances in Experimental Medicine and Biology(), vol 1409. Springer, Cham. https://doi.org/10.1007/5584_2022_725

Download citation

Publish with us

Policies and ethics