Skip to main content

Opportunities and Challenges in Stem Cell Aging

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 13

Abstract

Studying aging, as a physiological process that can cause various pathological phenotypes, has attracted lots of attention due to its increasing burden and prevalence. Therefore, understanding its mechanism to find novel therapeutic alternatives for age-related disorders such as neurodegenerative and cardiovascular diseases is essential. Stem cell senescence plays an important role in aging. In the context of the underlying pathways, mitochondrial dysfunction, epigenetic and genetic alterations, and other mechanisms have been studied and as a consequence, several rejuvenation strategies targeting these mechanisms like pharmaceutical interventions, genetic modification, and cellular reprogramming have been proposed. On the other hand, since stem cells have great potential for disease modeling, they have been useful for representing aging and its associated disorders. Accordingly, the main mechanisms of senescence in stem cells and promising ways of rejuvenation, along with some examples of stem cell models for aging are introduced and discussed. This review aims to prepare a comprehensive summary of the findings by focusing on the most recent ones to shine a light on this area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5, 15 DPP:

5, 15-Diphenylporphirine

ACC1:

Acetyl-Coa Carboxylase

AD:

Alzheimer Disease

ADSCs:

Adipose Derived Mesenchymal Stem Cells

Atg7:

Autophagy-Related Gene

BMMSCs:

Bone Marrow-Derived Mscs

BMP5:

Bone morphogenic Protein5

CoPP:

Cobalt Protoporphyrin

CR:

Caloric Restriction

CRP:

C-reactive Protein

CYGB:

Cytoglobulin

DDR:

DNA Damage Response

DKK1:

Dickkopf-1

DMOG:

Dimethyloxalyglycine

ERCC1:

Excision Repair Cross Complementing-Group1

FAPs:

Fibro-Adipogenic Progenitors

FASN:

Fatty Acid Synthase

FGF:

Fibroblast Growth Factor

GDF11:

Growth Differentiation Factor 11

Gnrh:

Gonadotropin Releasing Hormone

GPDH:

Glycerol-3-Phisphate Dehydrogenase

H2AX:

H2A Histone Family Member X

hCPCs:

Human Cardiac Progenitor Cells

HGPS:

Hutchinson-Gilford Progeria Syndrome

HSCs:

Hematopoietic Stem Cells

HSL:

Hormone- Sensitive Lipase

HSP70:

Heat Shock Protein 70

HSPCs:

Hematopoietic Stem and Progenitor Cells

IGF1:

Insulin-Like Growth Factor 1

IL:

Interleukin

iPSCs:

Induced Pluripotent Stem Cells

ISCs:

Intestinal Stem Cells

JAK/STAT:

Janus Kinase and Signal Transducer and Activator of Transcription

LVCP:

Lateral Ventricle Choroid Plexus

MAPK:

Mitogen-Activated Protein Kinase

miR:

micro RNA

Mnsod:

Manganese Superoxide Dismutase

MSCs:

Mesenchymal Stem Cells

Mterc:

Mouse Telomerase RNA Component

mTOR:

Mammalian Target Of Rapamycin

NAC:

N-acetyl-L-cysteine

NO:

Nitric Oxide

NR:

Nicotinamideriboside

Nrf2:

Nuclear Factor Erythroid2-Related Factor2

NSCs:

Neural Stem Cells

OCN:

Osteocalcin

OPN:

Osteopontin

PDIA3:

Protein Disulfide-Isomerase A3

PGC1α:

Pparg Coactivator 1 Alpha

RB:

Retinoblastoma Protein

ROS:

Reactive Oxygen Species

sFRP3:

Soluble Frizzled-Related Protein3

SIRT:

Sirtuin

SOD2:

Superoxide Dismutase 2

SOX2:

Sex Determining Region Y-Box 2

spry1:

Sprouty1

SVZ:

Subventricular Zone

sXBP1:

Spliced X-Box Binding Protein 1

TBI:

Total-Body Irradiation

Tert:

Telomerase Reverse Transcriptase

TET:

Ten-Eleven Translocation

Tet2:

Ten Eleven Translocation Methylcytosine Dioxygenase2

TNFα:

Tumor Necrosis Factor-α

TXNIP:

Thioredoxin-Interacting Protein

Uprmt:

Unfolded Protein Response

WISP1:

WNT1 Inducible Signaling Pathway Protein 1

β3-AR:

β3-Adreno Receptor

References

  • Adelman ER, Huang HT, Roisman A, Olsson A, Colaprico A, Qin T, Lindsley RC, Bejar R, Salomonis N, Grimes HL, Figueroa ME (2019) Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia. Cancer Discov 9(8):1080–1101

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed ASI, Sheng MH, Wasnik S, Baylink DJ, Lau K-HW (2017) Effect of aging on stem cells. World J Exp Med 7(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Alicka M, Kornicka-Garbowska K, Kucharczyk K, Kępska M, Rӧcken M, Marycz K (2020) Age-dependent impairment of adipose-derived stem cells isolated from horses. Stem Cell Res Ther 11

    Google Scholar 

  • Álvarez-Satta M, Moreno-Cugnon L, Matheu A (2019) Primary cilium and brain aging: role in neural stem cells, neurodegenerative diseases and glioblastoma. Ageing Res Rev 52:53–63

    Article  PubMed  CAS  Google Scholar 

  • Anversa P, Rota M, Urbanek K, Hosoda T, Sonnenblick EH, Leri A, Kajstura J, Bolli R (2005) Myocardial aging–a stem cell problem. Basic Res Cardiol 100(6):482–493

    Article  CAS  PubMed  Google Scholar 

  • Arjmand B, Goodarzi P, Mohamadi-Jahani F, Falahzadeh K, Larijani B (2017) Personalized regenerative medicine. Acta Med Iran 55(3):144–149

    PubMed  Google Scholar 

  • Arjmand B, Goodarzi P, Aghayan HR, Payab M, Rahim F, Alavi-Moghadam S, Mohamadi-Jahani F, Larijani B (2019) Co-transplantation of human fetal mesenchymal and hematopoietic stem cells in type 1 diabetic mice model. Front Endocrinol (Lausanne) 10:761

    Article  Google Scholar 

  • Arjmand B, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Gilany K, Mehrdad N, Larijani B (2020) Prospect of stem cell therapy and regenerative medicine in osteoporosis. Front Endocrinol (Lausanne) 11:430

    Article  Google Scholar 

  • Audesse AJ, Webb AE (2020) Mechanisms of enhanced quiescence in neural stem cell aging. Mech Ageing Dev 191:111323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avolio E, Gianfranceschi G, Cesselli D, Caragnano A, Athanasakis E, Katare R, Meloni M, Palma A, Barchiesi A, Vascotto C, Toffoletto B, Mazzega E, Finato N, Aresu G, Livi U, Emanueli C, Scoles G, Beltrami CA, Madeddu P, Beltrami AP (2014) Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction. Stem Cells 32(9):2373–2385

    Article  PubMed  Google Scholar 

  • Baht GS, Silkstone D, Vi L, Nadesan P, Amani Y, Whetstone H, Wei Q, Alman BA (2015) Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin. Nat Commun 6(1):7131

    Article  CAS  PubMed  Google Scholar 

  • Baradaran-Rafii A, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Aghayan HR, Larijani B, Rezaei-Tavirani M, Biglar M, Arjmand B (2020) Cell-based approaches towards treating age-related macular degeneration. Cell Tissue Bank 21(3):339–347

    Article  PubMed  Google Scholar 

  • Barber PJ, Wilson BJ (1980) Microsomal conversion of SKF 525-a and SKF 8742-a. Biochem Pharmacol 29(19):2577–2582

    Article  CAS  PubMed  Google Scholar 

  • Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM (2014) Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One 9(12):e115963–e115963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernardo BC, Gao X-M, Winbanks CE, Boey EJH, Tham YK, Kiriazis H, Gregorevic P, Obad S, Kauppinen S, Du X-J, Lin RCY, McMullen JR (2012) Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci U S A 109(43):17615–17620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20(3):265–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bersenev A, Rozenova K, Balcerek J, Jiang J, Wu C, Tong W (2012) Lnk deficiency partially mitigates hematopoietic stem cell aging. Aging Cell 11(6):949–959

    Article  CAS  PubMed  Google Scholar 

  • Bjerrum OW, Borregaard N (1989) Dual granule localization of the dormant NADPH oxidase and cytochrome b559 in human neutrophils. Eur J Haematol 43(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810

    Article  CAS  PubMed  Google Scholar 

  • Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden D, Chen D (2013) SIRT3 reverses aging-associated degeneration. Cell Rep

    Google Scholar 

  • Brunauer R, Alavez S, Kennedy BK (2017) Stem cell models: a guide to understand and mitigate aging? Gerontology 63(1):84–90

    Article  CAS  PubMed  Google Scholar 

  • Brunt KR, Zhang Y, Mihic A, Li M, Li S-H, Xue P, Zhang W, Basmaji S, Tsang K, Weisel RD, Yau TM, Li R-K (2012) Role of WNT/β-catenin signaling in rejuvenating myogenic differentiation of aged mesenchymal stem cells from cardiac patients. Am J Pathol 181(6):2067–2078

    Article  CAS  PubMed  Google Scholar 

  • Burtner CR, Kennedy BK (2010) Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol 11(8):567–578

    Article  CAS  PubMed  Google Scholar 

  • Carlson ME, Suetta C, Conboy MJ, Aagaard P, Mackey A, Kjaer M, Conboy I (2009) Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med 1(8–9):381–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesselli D, Beltrami AP, D’Aurizio F, Marcon P, Bergamin N, Toffoletto B, Pandolfi M, Puppato E, Marino L, Signore S, Livi U, Verardo R, Piazza S, Marchionni L, Fiorini C, Schneider C, Hosoda T, Rota M, Kajstura J, Anversa P, Beltrami CA, Leri A (2011) Effects of age and heart failure on human cardiac stem cell function. Am J Pathol 179(1):349–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesselli D, Aleksova A, Sponga S, Cervellin C, Di Loreto C, Tell G, Beltrami AP (2017) Cardiac cell senescence and redox signaling. Front Cardiovasc Med 4:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cesselli D, Aleksova A, Mazzega E, Caragnano A, Beltrami AP (2018) Cardiac stem cell aging and heart failure. Pharmacol Res 127:26–32

    Article  CAS  PubMed  Google Scholar 

  • Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490(7420):355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8):e201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang J, Wang Y, Shao L, Laberge R-M, Demaria M, Campisi J, Krishnamurthy J, Sharpless N, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D (2015) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22

    Google Scholar 

  • Chen J, He J, Li L, Yang D, Luo L (2016) Cyp2aa9 regulates haematopoietic stem cell development in zebrafish. Sci Rep 6:26608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Chang WY, Etheridge A, Strickfaden H, Jin Z, Palidwor G, Cho JH, Wang K, Kwon SY, Doré C, Raymond A, Hotta A, Ellis J, Kandel RA, Dilworth FJ, Perkins TJ, Hendzel MJ, Galas DJ, Stanford WL (2017) Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape. Aging Cell 16(4):870–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C-W, Adams GB, Perin L, Wei M, Zhou X, Lam BS, Da Sacco S, Mirisola M, Quinn DI, Dorff TB, Kopchick JJ, Longo VD (2014) Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14(6):810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow HM, Herrup K (2015) Genomic integrity and the ageing brain. Nat Rev Neurosci 16(11):672–684

    Article  CAS  PubMed  Google Scholar 

  • Cianflone E, Torella M, Chimenti C, De Angelis A, Beltrami AP, Urbanek K, Rota M, Torella D (2019) Adult cardiac stem cell aging: a reversible stochastic phenomenon? Oxidative Med Cell Longev 2019(5813147)

    Google Scholar 

  • Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D (2020) Targeting cardiac stem cell senescence to treat cardiac aging and disease. Cell 9(6):1558

    Article  CAS  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433(7027):760–764

    Article  CAS  PubMed  Google Scholar 

  • Conover JC, Todd KL (2017) Development and aging of a brain neural stem cell niche. Exp Gerontol 94:9–13

    Article  PubMed  Google Scholar 

  • Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20(3):255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantino S, Paneni F, Cosentino F (2016) Ageing, metabolism and cardiovascular disease. J Physiol 594(8):2061–2073

    Article  CAS  PubMed  Google Scholar 

  • D’Arcangelo D, Tinaburri L, Dellambra E (2017) The role of p16(INK4a) pathway in human epidermal stem cell self-renewal, aging and Cancer. Int J Mol Sci 18(7)

    Google Scholar 

  • Dai D-F, Chen T, Johnson SC, Szeto H, Rabinovitch PS (2012) Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 16(12):1492–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniele S, Da Pozzo E, Iofrida C, Martini C (2016) Human neural stem cell ageing is counteracted by α-glyceryl-phosphoryl-ethanolamine. ACS Chem Neurosci 7

    Google Scholar 

  • de Haan G, Lazare SS (2018) Aging of hematopoietic stem cells. Blood 131(5):479–487

    Article  PubMed  CAS  Google Scholar 

  • Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R, Leeman DS, George BM, Boutet SC, Hebestreit K, Pluvinage JV, Wyss-Coray T, Weissman IL, Vogel H, Davis MM, Brunet A (2019) Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571(7764):205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egerman MA, Glass DJ (2019) The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis. Crit Rev Biochem Mol Biol 54(2):174–183

    Article  PubMed  Google Scholar 

  • Elabd C, Cousin W, Upadhyayula P, Chen RY, Chooljian MS, Li J, Kung S, Jiang KP, Conboy IM (2014) Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun 5(1):4082

    Article  CAS  PubMed  Google Scholar 

  • Elmansi AM, Hussein KA, Herrero SM, Periyasamy-Thandavan S, Aguilar-Pérez A, Kondrikova G, Kondrikov D, Eisa NH, Pierce JL, Kaiser H, Ding KH, Walker AL, Jiang X, Bollag WB, Elsalanty M, Zhong Q, Shi XM, Su Y, Johnson M, Hunter M, Reitman C, Volkman BF, Hamrick MW, Isales CM, Fulzele S, McGee-Lawrence ME, Hill WD (2020) Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal cells. Bone Rep 12:100270

    Article  PubMed  PubMed Central  Google Scholar 

  • Ergen AV, Boles NC, Goodell MA (2012) Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119(11):2500–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fafián-Labora JA, Morente-López M, Arufe MC (2019) Effect of aging on behaviour of mesenchymal stem cells. World J Stem Cells 11(6):337–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Fei D, Zhang Y, Wu J, Zhang H, Liu A, He X, Wang J, Li B, Wang Q, Jin Y (2019) Ca(v) 1.2 regulates osteogenesis of bone marrow-derived mesenchymal stem cells via canonical Wnt pathway in age-related osteoporosis. Aging Cell 18(4):e12967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng Y, Huang W, Meng W, Jegga AG, Wang Y, Cai W, Kim HW, Pasha Z, Wen Z, Rao F, Modi RM, Yu X, Ashraf M (2014) Heat shock improves Sca-1+ stem cell survival and directs ischemic cardiomyocytes toward a prosurvival phenotype via exosomal transfer: a critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells 32(2):462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M, Scharffetter-Kochanek K, Zheng Y, Geiger H (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10(5):520–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florian MC, Nattamai KJ, Dörr K, Marka G, Uberle B, Vas V, Eckl C, Andrä I, Schiemann M, Oostendorp RA, Scharffetter-Kochanek K, Kestler HA, Zheng Y, Geiger H (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503(7476):392–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folch J, Busquets O, Ettcheto M, Sánchez-López E, Pallàs M, Beas-Zarate C, Marin M, Casadesus G, Olloquequi J, Auladell C, Camins A (2018) Experimental models for aging and their potential for novel drug discovery. Curr Neuropharmacol 16(10):1466–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulop T, Larbi A, Khalil A, Cohen AA, Witkowski JM (2019) Are We Ill Because We Age? Front Physiol 10:1508

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganguly P, El-Jawhari JJ, Burska AN, Ponchel F, Giannoudis PV, Jones EA (2019) The analysis of in vivo aging in human bone marrow mesenchymal stromal cells using Colony-forming unit-fibroblast assay and the CD45(low)CD271(+) phenotype. Stem Cells Int 2019(5197983)

    Google Scholar 

  • García-Prat L, Sousa-Victor P, Muñoz-Cánoves P (2013) Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J 280(17):4051–4062

    Article  PubMed  CAS  Google Scholar 

  • García-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano A, Sandri M, Muñoz-Cánoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 534

    Google Scholar 

  • Goodarzi P, Aghayan HR, Larijani B, Soleimani M, Dehpour A-R, Sahebjam M, Ghaderi F, Arjmand B (2015) Stem cell-based approach for the treatment of Parkinson’s disease. Med J Islam Repub Iran 29:168

    PubMed  PubMed Central  Google Scholar 

  • Goodarzi P, Alavi-Moghadam S, Sarvari M, Tayanloo Beik A, Falahzadeh K, Aghayan H, Payab M, Larijani B, Gilany K, Rahim F, Adibi H, Arjmand B (2018a) Adipose tissue-derived stromal cells for wound healing. Adv Exp Med Biol 1119:133–149

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi P, Larijani B, Alavi-Moghadam S, Tayanloo-Beik A, Mohamadi-Jahani F, Ranjbaran N, Payab M, Falahzadeh K, Mousavi M, Arjmand B (2018b) Mesenchymal stem cells-derived exosomes for wound regeneration. Adv Exp Med Biol 1119:119–131

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi P, Alavi-Moghadam S, Payab M, Larijani B, Rahim F, Gilany K, Bana N, Tayanloo-Beik A, Foroughi Heravani N, Hadavandkhani M, Arjmand B (2019a) Metabolomics analysis of mesenchymal stem cells. Int J Mol Cellular Med 8(Suppl1):30–40

    CAS  Google Scholar 

  • Goodarzi P, Payab M, Alavi-Moghadam S, Larijani B, Rahim F, Bana N, Sarvari M, Adibi H, Foroughi Heravani N, Hadavandkhani M, Arjmand B (2019b) Development and validation of Alzheimer’s disease animal model for the purpose of regenerative medicine. Cell Tissue Bank 20(2):141–151

    Article  PubMed  Google Scholar 

  • Grezella C, Fernandez-Rebollo E, Franzen J, Ventura Ferreira M, Beier F, Wagner W (2018) Effects of senolytic drugs on human mesenchymal stromal cells. Stem Cell Res Ther 9

    Google Scholar 

  • Grigoryan A, Guidi N, Senger K, Liehr T, Soller K, Marka G, Vollmer A, Markaki Y, Leonhardt H, Buske C, Lipka D, Plass C, Zheng y, Mulaw M, Geiger H, Florian C (2018) LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol:19

    Google Scholar 

  • Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14(2):188–202

    Article  CAS  PubMed  Google Scholar 

  • Gut P, Reischauer S, Stainier DYR, Arnaout R (2017) Little fish, big data: zebrafish as a model for cardiovascular and metabolic disease. Physiol Rev 97(3):889–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Haider H, Jiang S, Idris NM, Ashraf M (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103(11):1300–1308

    Article  CAS  PubMed  Google Scholar 

  • Haller S, Kapuria S, Riley RR, O’Leary MN, Schreiber KH, Andersen JK, Melov S, Que J, Rando TA, Rock J, Kennedy BK, Rodgers JT, Jasper H (2017) mTORC1 activation during repeated regeneration impairs somatic stem cell maintenance. Cell Stem Cell 21(6):806–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Won EJ, Lee BY, Hwang UK, Kim IC, Yim JH, Leung KM, Lee YS, Lee JS (2014) Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus. Aquat Toxicol 152:264–272

    Article  CAS  PubMed  Google Scholar 

  • Han F, Li X, Song D, Jiang S, Xu Q, Zhang Y (2015) SCNT versus iPSCs: proteins and small molecules in reprogramming. Int J Dev Biol 59(4–6):179–186

    Article  PubMed  Google Scholar 

  • Han MJ, Lee WJ, Choi J, Hong YJ, Uhm SJ, Choi Y, Do JT (2021) Inhibition of neural stem cell aging through the transient induction of reprogramming factors. J Comp Neurol 529(3):595–604

    Article  CAS  PubMed  Google Scholar 

  • Hariharan N, Quijada P, Mohsin S, Joyo A, Samse K, Monsanto M, De La Torre A, Avitabile D, Ormachea L, McGregor MJ, Tsai EJ, Sussman MA (2015) Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. J Am Coll Cardiol 65(2):133–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris EW, Cotman CW (1985) Effects of synaptic antagonists on perforant path paired-pulse plasticity: differentiation of pre- and postsynaptic antagonism. Brain Res 334(2):348–353

    Article  CAS  PubMed  Google Scholar 

  • He D, Wu H, Xiang J, Ruan X, Peng P, Ruan Y, Chen Y-G, Wang Y, Yu Q, Zhang H, Habib SL, De Pinho RA, Liu H, Li B (2020) Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nat Commun 11(1):37–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hekimi S, Lapointe J, Wen Y (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21(10):569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilpert M, Legrand C, Bluteau D, Balayn N, Betems A, Bluteau O, Villeval JL, Louache F, Gonin P, Debili N, Plo I, Vainchenker W, Gilles L, Raslova H (2014) p19 INK4d controls hematopoietic stem cells in a cell-autonomous manner during genotoxic stress and through the microenvironment during aging. Stem Cell Reports 3(6):1085–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho Y-H, del Toro R, Rivera-Torres J, Rak J, Korn C, García-García A, Macías D, González-Gómez C, del Monte A, Wittner M, Waller AK, Foster HR, López-Otín C, Johnson RS, Nerlov C, Ghevaert C, Vainchenker W, Louache F, Andrés V, Méndez-Ferrer S (2019) Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell 25(3):407–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hormaechea-Agulla D, Le DT, King KY (2020) Common sources of inflammation and their impact on hematopoietic stem cell biology. Curr Stem Cell Rep:1–12

    Google Scholar 

  • Hosokawa K, MacArthur BD, Ikushima YM, Toyama H, Masuhiro Y, Hanazawa S, Suda T, Arai F (2017) The telomere binding protein Pot1 maintains haematopoietic stem cell activity with age. Nat Commun 8(1):804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch S, Croteau D, Bohr V (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15

    Google Scholar 

  • Hsu J, Reilly A, Hayes BJ, Clough CA, Konnick EQ, Torok-Storb B, Gulsuner S, Wu D, Becker PS, Keel SB, Abkowitz JL, Doulatov S (2019) Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes. Blood 134(2):186–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang J-A, Wei L (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135(4):799–808

    Article  CAS  PubMed  Google Scholar 

  • Huh CJ, Zhang B, Victor MB, Dahiya S, Batista LF, Horvath S, Yoo AS (2016) Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. elife 5

    Google Scholar 

  • Hwang AB, Brack AS (2018) Muscle stem cells and aging. Curr Top Dev Biol 126:299–322

    Article  PubMed  Google Scholar 

  • Ishikawa N, Nakamura K, Izumiyama-Shimomura N, Aida J, Matsuda Y, Arai T, Takubo K (2016) Changes of telomere status with aging: an update. Geriatr Gerontol Int 16(Suppl 1):30–42

    Article  PubMed  Google Scholar 

  • Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451

    Article  CAS  PubMed  Google Scholar 

  • Jang YC, Van Remmen H (2009) The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp Gerontol 44(4):256–260

    Article  CAS  PubMed  Google Scholar 

  • Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443(7110):421–426

    Article  CAS  PubMed  Google Scholar 

  • Jaskelioff M, Muller F, Paik J-H, Thomas E, Jiang S, Adams A, Sahin E, Kost-Alimova M, Protopopov A, Cadiñanos J, Horner J, Maratos-Flier E, Depinho R (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:102–106

    Article  CAS  PubMed  Google Scholar 

  • Jasper H (2020) Intestinal stem cell aging: origins and interventions. Annu Rev Physiol 82:203–226

    Article  CAS  PubMed  Google Scholar 

  • Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110(11):1465–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Guo Y (2020) Epigenetic clock: DNA methylation in aging. Stem Cells Int 2020:1047896

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung H, Kim DO, Byun JE, Kim WS, Kim MJ, Song HY, Kim YK, Kang DK, Park YJ, Kim TD, Yoon SR, Lee HG, Choi EJ, Min SH, Choi I (2016) Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p38 kinase activity. Nat Commun 7:13674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaar R, Wyman C, Rothstein R (2008) Quality control of DNA break metabolism: in the ‘end’, it’s a good thing. EMBO J 27(4):581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanasi E, Ayilavarapu S, Jones J (2016) The aging population: demographics and the biology of aging. Periodontol 72(1):13–18

    Article  Google Scholar 

  • Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344(6184):630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur G, Cai C (2018) Current Progress in the rejuvenation of aging stem/progenitor cells for improving the therapeutic effectiveness of myocardial repair. Stem Cells Int 2018(9308301)

    Google Scholar 

  • Khacho M, Clark A, Svoboda DS, Azzi J, MacLaurin JG, Meghaizel C, Sesaki H, Lagace DC, Germain M, Harper M-E, Park DS, Slack RS (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19(2):232–247

    Article  CAS  PubMed  Google Scholar 

  • Khalil H, Tazi M, Caution K, Ahmed A, Kanneganti A, Assani K, Kopp B, Marsh C, Dakhlallah D, Amer AO (2016) Aging is associated with hypermethylation of autophagy genes in macrophages. Epigenetics 11(5):381–388

    Article  PubMed  PubMed Central  Google Scholar 

  • Khatiwala R, Cai C (2016) Strategies to enhance the effectiveness of adult stem cell therapy for ischemic heart diseases affecting the elderly patients. Stem Cell Rev Rep 12(2):214–223

    Article  PubMed  Google Scholar 

  • Khorraminejad-Shirazi M, Farahmandnia M, Kardeh B, Estedlal A, Kardeh S, Monabati A (2018) Aging and stem cell therapy: AMPK as an applicable pharmacological target for rejuvenation of aged stem cells and achieving higher efficacy in stem cell therapy. Hematol Oncol Stem Cell Ther 11(4):189–194

    Article  CAS  PubMed  Google Scholar 

  • Kikushige Y, Miyamoto T (2014) Hematopoietic stem cell aging and chronic lymphocytic leukemia pathogenesis. Int J Hematol 100(4):335–340

    Article  CAS  PubMed  Google Scholar 

  • Kim DE, Dollé M, Vermeij W, Gyenis A, Vogel K, Hoeijmakers J, Wiley C, Davalos A, Hasty P, Desprez PY, Campisi J (2019) Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Aging Cell 19

    Google Scholar 

  • Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H (2016) Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front Immunol 7:502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larijani, B., P. Goodarzi, M. Payab, A. Tayanloo-Beik, M. Sarvari, M. Gholami, K. Gilany, E. Nasli-Esfahani, M. Yarahmadi, F. Ghaderi and B. Arjmand (2019). “The Design and Application of an Appropriate Parkinson’s Disease Animal Model in Regenerative Medicine.” Adv Exp Med Biol

    Google Scholar 

  • Larrick JW, Larrick JW, Mendelsohn AR (2016) Reversal of aged muscle stem cell dysfunction. Rejuvenation Res 19(5):423–429

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Yoon SR, Choi I, Jung H (2019) Causes and mechanisms of hematopoietic stem cell aging. Int J Mol Sci 20(6)

    Google Scholar 

  • Leeman DS, Hebestreit K, Ruetz T, Webb AE, McKay A, Pollina EA, Dulken BW, Zhao X, Yeo RW, Ho TT, Mahmoudi S, Devarajan K, Passegué E, Rando TA, Frydman J, Brunet A (2018) Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science (New York, NY) 359(6381):1277–1283

    Article  CAS  Google Scholar 

  • Leins H, Mulaw M, Eiwen K, Sakk V, Liang Y, Denkinger M, Geiger H, Schirmbeck R (2018) Aged murine hematopoietic stem cells drive aging-associated immune remodeling. Blood 132(6):565–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, Zhu J, Du X, Xiong L, Du Y, Xu J, Xiao X, Wang J, Chai Z, Zhao Y, Deng H (2015) Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu P, Xu S, Li Y, Dekker JD, Li B, Fan Y, Zhang Z, Hong Y, Yang G, Tang T, Ren Y, Tucker HO, Yao Z, Guo X (2017) FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest 127(4):1241–1253

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Wu J, Liu S, Zhang K, Miao X, Li J, Shi Z, Gao Y (2019) miR-384-5p targets Gli2 and negatively regulates age-related osteogenic differentiation of rat bone marrow mesenchymal stem cells. Stem Cells Dev 28(12):791–798

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Sohn J, Shen H, Langhans MT, Tuan RS (2019) Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing. Biomaterials 203:96–110

    Article  CAS  PubMed  Google Scholar 

  • Liu HY, Chiou JF, Wu AT, Tsai CY, Leu JD, Ting LL, Wang MF, Chen HY, Lin CT, Williams DF, Deng WP (2012) The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells. Biomaterials 33(26):6105–6112

    Article  CAS  PubMed  Google Scholar 

  • Liu XB, Wang JA, Ji XY, Yu SP, Wei L (2014) Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem Cell Res Ther 5(5):111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu M, Lei H, Dong P, Fu X, Yang Z, Yang Y, Ma J, Liu X, Cao Y, Xiao R (2017) Adipose-derived mesenchymal stem cells from the elderly exhibit decreased migration and differentiation abilities with senescent properties. Cell Transplant 26(9):1505–1519

    Article  PubMed  PubMed Central  Google Scholar 

  • Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J, Bronson R, Buhlmann JE, Lipman R, Curry R, Sharpe A, Jaenisch R, Guarente L (2000) Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol Cell Biol 20(9):3286–3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ludke A, Li RK, Weisel RD (2014) The rejuvenation of aged stem cells for cardiac repair. Can J Cardiol 30(11):1299–1306

    Article  PubMed  Google Scholar 

  • Lukjanenko L, Karaz S, Stuelsatz P, Gurriaran-Rodriguez U, Michaud J, Dammone G, Sizzano F, Mashinchian O, Ancel S, Migliavacca E, Liot S, Jacot G, Metairon S, Raymond F, Descombes P, Palini A, Chazaud B, Rudnicki MA, Bentzinger CF, Feige JN (2019) Aging disrupts muscle stem cell function by impairing Matricellular WISP1 secretion from fibro-Adipogenic progenitors. Cell Stem Cell 24(3):433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machairaki V (2020) Human pluripotent stem cells as in vitro models of neurodegenerative diseases. Adv Exp Med Biol 1195:93–94

    Article  CAS  PubMed  Google Scholar 

  • Mai T, Markov GJ, Brady JJ, Palla A, Zeng H, Sebastiano V, Blau HM (2018) NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction. Nat Cell Biol 20(8):900–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, Lonetto MA, Maecker HT, Kovarik J, Carson S, Glass DJ, Klickstein LB (2014) mTOR inhibition improves immune function in the elderly. Sci Transl Med 6(268):268ra179

    Article  PubMed  CAS  Google Scholar 

  • Mantel C, Messina-Graham S, Moh A, Cooper S, Hangoc G, Fu XY, Broxmeyer HE (2012) Mouse hematopoietic cell-targeted STAT3 deletion: stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging-like phenotype. Blood 120(13):2589–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Suárez S, Valero J, Muro-García T, Encinas JM (2019) Phenotypical and functional heterogeneity of neural stem cells in the aged hippocampus. Aging Cell 18(4):e12958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maryanovich M, Zahalka AH, Pierce H, Pinho S, Nakahara F, Asada N, Wei Q, Wang X, Ciero P, Xu J, Leftin A, Frenette PS (2018) Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med 24(6):782–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto C, Jiang Y, Emathinger J, Quijada P, Nguyen N, De La Torre A, Moshref M, Nguyen J, Levinson AB, Shin M, Sussman MA, Hariharan N (2018) Short telomeres induce p53 and autophagy and modulate age-associated changes in cardiac progenitor cell fate. Stem Cells 36(6):868–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mejia-Ramirez E, Geiger H, Florian MC (2020) Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging. Hum Mol Genet 29(R2):R248–r254

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn AR, Larrick JW (2011) Overcoming the aging systemic milieu to restore neural stem cell function. Rejuvenation Res 14(6):681–684

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn AR, Larrick JW, Lei JL (2017) Rejuvenation by partial reprogramming of the epigenome. Rejuvenation Res 20(2):146–150

    Article  PubMed  Google Scholar 

  • Mertens J, Paquola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, McGrath S, Campbell B, Lee H, Herdy JR, Gonçalves JT, Toda T, Kim Y, Winkler J, Yao J, Hetzer MW, Gage FH (2015) Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17(6):705–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertens J, Reid D, Lau S, Kim Y, Gage FH (2018) Aging in a dish: iPSC-derived and directly induced neurons for studying brain aging and age-related neurodegenerative diseases. Annu Rev Genet 52:271–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15(6):575–591

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R (2015) Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci 3:283–303

    Article  CAS  PubMed  Google Scholar 

  • Miyabara EH, Nascimento TL, Rodrigues DC, Moriscot AS, Davila WF, AitMou Y, deTombe PP, Mestril R (2012) Overexpression of inducible 70-kDa heat shock protein in mouse improves structural and functional recovery of skeletal muscles from atrophy. Pflugers Arch 463(5):733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, Haynes CM, Chen D (2015) Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347(6228):1374–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohsin S, Khan M, Toko H, Bailey B, Cottage CT, Wallach K, Nag D, Lee A, Siddiqi S, Lan F, Fischer KM, Gude N, Quijada P, Avitabile D, Truffa S, Collins B, Dembitsky W, Wu JC, Sussman MA (2012) Human cardiac progenitor cells engineered with Pim-I kinase enhance myocardial repair. J Am Coll Cardiol 60(14):1278–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon J, Kim HR, Shin MG (2018) Rejuvenating aged hematopoietic stem cells through improvement of mitochondrial function. Ann Lab Med 38(5):395–401

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno-Cugnon L, Revuelta M, Arrizabalaga O, Colie S, Moreno-Valladares M, Jimenez-Blasco D, Gil-Bea F, Llarena I, Bolaños JP, Nebreda AR, Matheu A (2019) Neuronal p38α mediates age-associated neural stem cell exhaustion and cognitive decline. Aging Cell 18(6):e13044–e13044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Cugnon L, Arrizabalaga O, Llarena I, Matheu A (2020) Elevated p38MAPK activity promotes neural stem cell aging. Aging 12(7):6030–6036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Cánoves P, Neves J, Sousa-Victor P (2020) Understanding muscle regenerative decline with aging: new approaches to bring back youthfulness to aged stem cells. FEBS J 287(3):406–416

    Article  PubMed  CAS  Google Scholar 

  • Naito AT, Sumida T, Nomura S, Liu ML, Higo T, Nakagawa A, Okada K, Sakai T, Hashimoto A, Hara Y, Shimizu I, Zhu W, Toko H, Katada A, Akazawa H, Oka T, Lee JK, Minamino T, Nagai T, Walsh K, Kikuchi A, Matsumoto M, Botto M, Shiojima I, Komuro I (2012) Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell 149(6):1298–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Hosoyama T, Murakami J, Samura M, Ueno K, Kurazumi H, Suzuki R, Mikamo A, Hamano K (2017) Age-related increase in Wnt inhibitor causes a senescence-like phenotype in human cardiac stem cells. Biochem Biophys Res Commun 487(3):653–659

    Article  CAS  PubMed  Google Scholar 

  • Neves J, Sousa-Victor P, Jasper H (2017) Rejuvenating strategies for stem cell-based therapies in aging. Cell Stem Cell 20(2):161–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen N, Sussman MA (2015) Rejuvenating the senescent heart. Curr Opin Cardiol 30(3):235–239

    Article  PubMed  PubMed Central  Google Scholar 

  • Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, Rodrigues NP, Crockford TL, Cabuy E, Vindigni A, Enver T, Bell JI, Slijepcevic P, Goodnow CC, Jeggo PA, Cornall RJ (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447(7145):686–690

    Article  CAS  PubMed  Google Scholar 

  • Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E, Araoka T, Vazquez-Ferrer E, Donoso D, Roman JL, Xu J, Rodriguez Esteban C, Nuñez G, Nuñez Delicado E, Campistol JM, Guillen I, Guillen P, Belmonte JCI (2016) In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167(7):1719–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh J, Lee YD, Wagers AJ (2014) Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 20(8):870–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh J, Sinha I, Tan KY, Rosner B, Dreyfuss JM, Gjata O, Tran P, Shoelson SE, Wagers AJ (2016) Age-associated NF-κB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function. Aging (Albany NY) 8(11):2871–2896

    Article  CAS  PubMed Central  Google Scholar 

  • Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M (2016) Abrogation of age-induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells 34(1):148–159

    Article  CAS  PubMed  Google Scholar 

  • Oliva AA, McClain-Moss L, Pena A, Drouillard A, Hare JM (2019) Allogeneic mesenchymal stem cell therapy: a regenerative medicine approach to geroscience. Aging Medicine 2(3):142–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette F, Topisirovic I, Hulea L (2019) mTOR as a central regulator of lifespan and aging. F1000Res 8

    Google Scholar 

  • Parhizkar Roudsari P, Alavi-Moghadam S, Payab M, Sayahpour FA, Aghayan HR, Goodarzi P, Mohamadi-Jahani F, Larijani B, Arjmand B (2020) Auxiliary role of mesenchymal stem cells as regenerative medicine soldiers to attenuate inflammatory processes of severe acute respiratory infections caused by COVID-19. Cell Tissue Bank 21(3):405–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picca A, Guerra F, Calvani R, Bucci C, Lo Monaco MR, Bentivoglio AR, Coelho-Júnior HJ, Landi F, Bernabei R, Marzetti E (2019) Mitochondrial dysfunction and aging: insights from the analysis of extracellular vesicles. Int J Mol Sci 20(4):805

    Article  CAS  PubMed Central  Google Scholar 

  • Pineda JR, Daynac M, Chicheportiche A, Cebrian-Silla A, Sii Felice K, Garcia-Verdugo JM, Boussin FD, Mouthon MA (2013) Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol Med 5(4):548–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirmoradi S, Fathi E, Farahzadi R, Pilehvar-Soltanahmadi Y, Zarghami N (2018) Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression. Drug Res (Stuttg) 68(4):213–221

    Article  CAS  Google Scholar 

  • Price FD, von Maltzahn J, Bentzinger CF, Dumont NA, Yin H, Chang NC, Wilson DH, Frenette J, Rudnicki MA (2014) Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 20(10):1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raabe EH, Lim KS, Kim JM, Meeker A, Mao X-G, Nikkhah G, Maciaczyk J, Kahlert U, Jain D, Bar E, Cohen KJ, Eberhart CG (2011) BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin Cancer Res 17(11):3590–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren R, Ocampo A, Liu GH, Izpisua Belmonte JC (2017) Regulation of stem cell aging by metabolism and epigenetics. Cell Metab 26(3):460–474

    Article  CAS  PubMed  Google Scholar 

  • Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM, Frantz MC, Bell-Temin H, Pope-Varsalona H, Gurkar AU, Nasto LA, Robinson RAS, Fuhrmann-Stroissnigg H, Czerwinska J, McGowan SJ, Cantu-Medellin N, Harris JB, Maniar S, Ross MA, Trussoni CE, LaRusso NF, Cifuentes-Pagano E, Pagano PJ, Tudek B, Vo NV, Rigatti LH, Opresko PL, Stolz DB, Watkins SC, Burd CE, Croix CMS, Siuzdak G, Yates NA, Robbins PD, Wang Y, Wipf P, Kelley EE, Niedernhofer LJ (2018) Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 17:259–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochette L, Malka G (2019) Neuroprotective potential of GDF11: myth or reality? Int J Mol Sci 20(14):3563

    Article  CAS  PubMed Central  Google Scholar 

  • Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696

    Article  CAS  PubMed  Google Scholar 

  • Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME, Esposito G, Vitale S, Urbanek K, Casarsa C, Giorgio M, Lüscher TF, Pelicci PG, Anversa P, Leri A, Kajstura J (2006) Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 99(1):42–52

    Article  CAS  PubMed  Google Scholar 

  • Rübe CE, Fricke A, Widmann TA, Fürst T, Madry H, Pfreundschuh M, Rübe C (2011) Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One 6(3):e17487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saeidimehr S, Ebrahimi A, Saki N, Goodarzi P, Rahim F (2016) MicroRNA-based linkage between aging and Cancer: from epigenetics view point. Cell J 18(2):117–126

    PubMed  PubMed Central  Google Scholar 

  • Sanokawa-Akakura R, Akakura S, Ostrakhovitch EA, Tabibzadeh S (2019) Replicative senescence is distinguishable from DNA damage-induced senescence by increased methylation of promoter of rDNA and reduced expression of rRNA. Mech Ageing Dev 183:111149

    Article  CAS  PubMed  Google Scholar 

  • Sarbacher CA, Halper JT (2019) Connective tissue and age-related diseases. Subcell Biochem 91:281–310

    Article  CAS  PubMed  Google Scholar 

  • Sarkar TJ, Quarta M, Mukherjee S, Colville A, Paine P, Doan L, Tran CM, Chu CR, Horvath S, Qi LS, Bhutani N, Rando TA, Sebastiano V (2020) Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat Commun 11(1):1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh Y, Yokota T, Sudo T, Kondo M, Lai A, Kincade PW, Kouro T, Iida R, Kokame K, Miyata T, Habuchi Y, Matsui K, Tanaka H, Matsumura I, Oritani K, Kohwi-Shigematsu T, Kanakura Y (2013) The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity 38(6):1105–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwörer S, Becker F, Feller C, Baig AH, Köber U, Henze H, Kraus JM, Xin B, Lechel A, Lipka DB, Varghese CS, Schmidt M, Rohs R, Aebersold R, Medina KL, Kestler HA, Neri F, von Maltzahn J, Tümpel S, Rudolph KL (2016) Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals. Nature 540(7633):428–432

    Article  PubMed  CAS  Google Scholar 

  • Shang J, Yao Y, Fan X, Shangguan L, Li J, Liu H, Zhou Y (2016) miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53–p21 and p16–pRB pathways. Biochimica et Biophysica Acta (BBA) – Mol Cell Res 1863(4):520–532

    Article  CAS  Google Scholar 

  • Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8(9):703–713

    Article  CAS  PubMed  Google Scholar 

  • Shetty AK, Kodali M, Upadhya R, Madhu LN (2018) Emerging anti-aging strategies - scientific basis and efficacy. Aging Dis 9(6):1165–1184

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva-Vargas V, Maldonado-Soto A, Mizrak D, Codega P, Doetsch F (2016) Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell 19

    Google Scholar 

  • Singh PB, Newman AG (2018) Age reprogramming and epigenetic rejuvenation. Epigenetics Chromatin 11(1):73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344(6184):649–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soenen S, Rayner CK, Jones KL, Horowitz M (2016) The ageing gastrointestinal tract. Curr Opin Clin Nutr Metab Care 19(1):12–18

    Article  PubMed  Google Scholar 

  • Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardí M, Ballestar E, González S, Serrano AL, Perdiguero E, Muñoz-Cánoves P (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506(7488):316–321

    Article  CAS  PubMed  Google Scholar 

  • Sousa-Victor P, Ayyaz A, Hayashi R, Qi Y, Madden DT, Lunyak VV, Jasper H (2017) Piwi is required to limit exhaustion of aging somatic stem cells. Cell Rep 20(11):2527–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa-Victor P, García-Prat L, Muñoz-Cánoves P (2018) New mechanisms driving muscle stem cell regenerative decline with aging. Int J Dev Biol 62(6–7-8):583–590

    Article  CAS  PubMed  Google Scholar 

  • Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11(11):1006–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, Wang H, Le T, Faull KF, Chen R, Gu H, Bock C, Meissner A, Göttgens B, Darlington GJ, Li W, Goodell MA (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 14(5):673–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sussman MA, Anversa P (2004) Myocardial aging and senescence: where have the stem cells gone? Annu Rev Physiol 66(1):29–48

    Article  CAS  PubMed  Google Scholar 

  • Syková E, Mazel T, Hasenöhrl RU, Harvey AR, Simonová Z, Mulders WH, Huston JP (2002) Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus 12(2):269–279

    Article  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Tan EP, Duncan FE, Slawson C (2017) The sweet side of the cell cycle. Biochem Soc Trans 45(2):313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tani H, Sadahiro T, Ieda M (2018) Direct cardiac reprogramming: a novel approach for heart regeneration. Int J Mol Sci 19(9)

    Google Scholar 

  • Tomasetti C, Vogelstein B (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347(6217):78–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, Zias E, Walsh K, Rosenzweig A, Sussman MA, Urbanek K, Nadal-Ginard B, Kajstura J, Anversa P, Leri A (2004) Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 94(4):514–524

    Article  CAS  PubMed  Google Scholar 

  • Traxler L, Edenhofer F, Mertens J (2019) Next-generation disease modeling with direct conversion: a new path to old neurons. FEBS Lett 593(23):3316–3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Meter M, Kashyap M, Rezazadeh S, Geneva AJ, Morello TD, Seluanov A, Gorbunova V (2014) SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun 5(1):5011

    Article  PubMed  CAS  Google Scholar 

  • Vilas JM, Carneiro C, Da Silva-Álvarez S, Ferreirós A, González P, Gómez M, Ortega S, Serrano M, García-Caballero T, González-Barcia M, Vidal A, Collado M (2018) Adult Sox2+ stem cell exhaustion in mice results in cellular senescence and premature aging. Aging Cell 17(5):e12834–e12834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, Lucin KM, Czirr E, Park JS, Couillard-Després S, Aigner L, Li G, Peskind ER, Kaye JA, Quinn JF, Galasko DR, Xie XS, Rando TA, Wyss-Coray T (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477(7362):90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8):537–549

    Article  CAS  PubMed  Google Scholar 

  • Wahlestedt M, Norddahl G, Sten G, Ugale A, Frisk M-A, Mattsson R, Deierborg T, Sigvardsson M, Bryder D (2013) An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 121

    Google Scholar 

  • Wahlestedt M, Pronk CJ, Bryder D (2015) Concise review: hematopoietic stem cell aging and the prospects for rejuvenation. Stem Cells Transl Med 4(2):186–194

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sharpless N, Chang S (2013) p16(INK4a) protects against dysfunctional telomere-induced ATR-dependent DNA damage responses. J Clin Invest 123(10):4489–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-Q, Shao Y, Ma C-Y, Chen W, Sun L, Liu W, Zhang D-Y, Fu B-C, Liu K-Y, Jia Z-B, Xie B-D, Jiang S-L, Li R-K, Tian H (2014) Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress. J Cell Mol Med 18(11):2298–2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Fu B, Sun X, Li D, Huang Q, Zhao W, Chen X (2015) Differentially expressed microRNAs in bone marrow mesenchymal stem cell-derived microvesicles in young and older rats and their effect on tumor growth factor-β1-mediated epithelial-mesenchymal transition in HK2 cells. Stem Cell Res Ther 6:185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M-J, Chen J, Chen F, Liu Q, Sun Y, Yan C, Yang T, Bao Y, Hu Y-P (2019) Rejuvenating strategies of tissue-specific stem cells for healthy aging. Aging Dis 10(4):871–882

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, Liu C, Yang C (2020) Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun

    Google Scholar 

  • Yang Y-HK (2018) Aging of mesenchymal stem cells: implication in regenerative medicine. Regenerat Therapy 9:120–122

    Article  Google Scholar 

  • Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476(7359):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousef H, Conboy MJ, Morgenthaler A, Schlesinger C, Bugaj L, Paliwal P, Greer C, Conboy IM, Schaffer D (2015) Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget 6(14):11959–11978

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang DY, Pan Y, Zhang C, Yan BX, Yu SS, Wu DL, Shi MM, Shi K, Cai XX, Zhou SS, Wang JB, Pan JP, Zhang LH (2013a) Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production. Mol Cell Biochem 374(1–2):13–20

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D (2013b) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497(7448):211–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ryu D, Wu Y-B, Gariani K, Wang X, Luan P, DtextquoterightAmico D, Ropelle E, Lutolf M, Aebersold R, Schoonjans K, Menzies K, Auwerx J (2016) NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352

    Google Scholar 

  • Zhang S, Li X, Jourd’heuil FL, Qu S, Devejian N, Bennett E, Jourd’heuil D, Cai C (2017) Cytoglobin promotes cardiac progenitor cell survival against oxidative stress via the upregulation of the NFκB/iNOS signal pathway and nitric oxide production. Sci Rep 7(1):10754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O’Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4):644–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Zhang C, Gao Y, Wu F, Zhou Y, Wu W-S (2019a) The transcription factor slug represses p16Ink4a and regulates murine muscle stem cell aging. Nat Commun 10(1):2568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y, Liu X, Ding X, Wang F, Geng X (2019b) Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 20(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Zhu LY, Yu LM, Zhang WH, Deng JJ, Liu SF, Huang W, Zhang MH, Lu YQ, Han XX, Liu YH (2020) Aging induced p53/p21 in genioglossus muscle stem cells and enhanced upper airway injury. Stem Cells Int 2020:8412598

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziff OJ, Patani R (2019) Harnessing cellular aging in human stem cell models of amyotrophic lateral sclerosis. Aging Cell 18(1):e12862

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Zou P, Wang J, Li L, Wang Y, Zhou D, Liu L (2012) Inhibition of p38 MAPK activity promotes ex vivo expansion of human cord blood hematopoietic stem cells. Ann Hematol 91(6):813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

There is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author Contribution Statements

Najmeh Foroughi Heravani and Setareh Alaei wrote the first draft. Mostafa Rezaei-Tavirani, Akram Tayanloo-Beik, Hamid Reza Aghayan, and Parisa Goodarzi helped to study and gather information. Moloud Payab and Sepideh Alavi-Moghadam extensively edited the manuscript. Bagher Larijani participated in a critical review. Babak Arjmand helped supervise the project and gave final approval of the version to be published.

Funding

This article received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larijani, B. et al. (2021). Opportunities and Challenges in Stem Cell Aging. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 13. Advances in Experimental Medicine and Biology(), vol 1341. Springer, Cham. https://doi.org/10.1007/5584_2021_624

Download citation

Publish with us

Policies and ethics