Skip to main content

C and O isotopes in a deep-sea coral ( Lophelia pertusa) related to skeletal microstructure

  • Chapter
Cold-Water Corals and Ecosystems

Abstract

Lophelia pertusa is a deep-sea scleractinian coral (azooxanthellate) found on the continental margins of the major world oceans. Built of aragonite it can be precisely dated and measured for stable isotope composition (C–O) to reconstruct past oceanic conditions. However, the relation between stable isotope and skeleton microstructures, i.e. centres of calcification and surrounding fibres, is crucial for understanding the isotopic patterns. Values for δ18O and δ13C in Lophelia pertusa were determined at a micrometer scale using an ion microprobe (SIMS - Secondary Ion Mass Spectrometry). In this coral species, centres of calcification are large (50 µm) and arranged in lines. The centres of calcification have a restricted range of variation in δ18O (−2.8 ± 0.3 ‰ (V-PDB)), and a larger range in δ13C (14.3 to 10.9 ‰ (V-PDB)). Surrounding skeletal fibres exhibit large isotopic variation both for C and O (up to 12 ‰) and δ13C and δ18O are positively correlated. The C and O isotopic composition of the centres of calcification deviate from this linear trend at the lightest δ18O values of the surrounding fibres. The fine-scaled variation of δ18O is probably the result of two processes: (1) isotopic equilibrium calcification with at least 1 pH unit variation in the calcification fluid and (2) kinetic fractionation. The apparent δ13C disequilibrium in Lophelia pertusa may be the result of mixing between depleted δ13C metabolic CO2 (respiration) and DIC coming directly from seawater. This study underlines the close relationship between microstructure and stable isotopes in corals. This relationship must also be taken into consideration for major elements like Mg and trace elements (U-Sr-Ba) increasing the reliability of the geochemical tools used in paleoceanography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins JF, Cheng H, Boyle EA, Druffel ERM, Edwards RL (1998) Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280: 725–728

    Article  Google Scholar 

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67: 1129–1143

    Article  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exper Mar Biol Ecol 288: 1–15

    Google Scholar 

  • Al-Moghrabi SM, Al-Horani FA, de Beer D (2001) Calcification by the scleractinian coral Galaxea fascicularis: direct measurements on calicoblastic layer using microsensors. Proc 8th Int Symp Biomineralization, p 45

    Google Scholar 

  • Bett B (2001) UK Atlantic margin environmental survey: introduction and overview of bathyal benthic ecology. Cont Shelf Res 21: 917–956

    Article  Google Scholar 

  • Blamart D, van Weering TCE, Ayliffe L, Labeyrie L, Lutringer, A, Vonhof HB, Ganssen G (2000) Modern NE Atlantic Ocean cold water coral characteristics. EOS Trans AGU, 81: 640

    Google Scholar 

  • Cheng H, Adkins JF, Edwards RL, Boyle EA (2000) U-Th dating of deep-sea corals. Geochim Cosmochim Acta 64: 2401–2416

    Article  Google Scholar 

  • Cohen A, Layne GD, Hart SR, Lobel PS (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16: 20–26

    Article  Google Scholar 

  • Cuif JP, Dauphin Y (1998) Microstructural and physico-chemical characterisation of centres of calcification in septa of some scleractinian corals. Paläont Z 72: 257–270

    Google Scholar 

  • Cuif JP, Dauphin Y, Doucet J, Salome M, Susini J (2003) XANES mapping of organic sulphate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67: 75–83

    Article  Google Scholar 

  • De Chambost E (1997) User’s Guide for Multicollector Caméca IMS 1270. Caméca, Courbevoie, France

    Google Scholar 

  • Deloule E, Chaussidon M, Allé P (1992) Instrumental limitations for isotope measurements with a Caméca IMS-3f ion microprobe: Example of H, B, S and Sr. Chem Geol 101: 187–192

    Article  Google Scholar 

  • Emiliani C, Hudson JH, Shinn EA, George RY (1978) Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science 202: 627–629

    Google Scholar 

  • Frank N, Paterne M, Ayliffe LK, van Weering T, Henriet J P, Blamart D (2004) Eastern North Atlantic deep-sea corals: Tracing upper intermediate water Δ14C during the Holocene. Earth Planet Sci Lett 219: 297–309

    Article  Google Scholar 

  • Frank N, Lutringer A, Paterne M, Blamart D, Henriet JP, van Rooij D, van Weering T (2005) Deep-water corals of the northeastern Atlantic margin: carbonate mound evolution and upper intermediate water ventilation during the Holocene. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 113–133

    Google Scholar 

  • Freiwald A (2002). Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean Margin Systems. Springer, Berlin Heidelberg, pp. 365–385

    Google Scholar 

  • Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, West Finnmark, northern Norway. SEPM Spec Publ 56: 141–161

    Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exper Biol 203: 3445–3457

    Google Scholar 

  • Gaffey S (1988) Water in skeletal carbonates. J Sediment Petrol 58: 397–414

    Google Scholar 

  • Gladfelter EH (1982) Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1: 45–51

    Google Scholar 

  • Grehan AJ, Unnithan V, Olu-Le Roy K, Opderbecke J (in press) Fishing impacts on Irish deep-water coral reefs: making the case for coral conservation. In: Barnes P, Thomas J (eds) Proceedings of the Symposium on Effects of Fishing Activities on Benthic Habitats: Linking Geology, Biology, Socioeconomics and Management. Amer Fish Soc

    Google Scholar 

  • Hidaka M (1991) Fusiform and needle-shaped crystals found on the skeleton of a coral, Galaxea fascicularis. In: Sugo S, Nakaharo H (eds) Mechanism and physiology of biomineralization in biological systems. Springer, Berlin Heidelberg, pp 139–143

    Google Scholar 

  • Ireland T (1995) Ion microprobe mass spectrometry: techniques and applications in cosmochemistry, geochemistry, and geochronology. Adv Anal Geochem 2: 1–118

    Google Scholar 

  • Land LS, Lang JC, Barnes DJ (1975) Extension rate: a primary control on the isotopic composition of West Indian (Jamaican) scleractinian reef coral skeletons. Mar Biol 33: 221–233

    Article  Google Scholar 

  • Le Tissier M d’A (1988) Diurnal pattern of skeleton formation in Pocillopora damicornis (Linnaeus). Coral Reefs 7: 81–88

    Article  Google Scholar 

  • Lutringer A (2002) Validation d’un nouvel outil pour le traçage de la variabilité des eaux intermediaries. Les coraux profonds. Master Univ Paris XI, 33 pp

    Google Scholar 

  • Mahon KI, Harrison TM, McKeegan KD (1998) The thermal and cementation histories of a sandstone petroleum reservoir, Elk Hills, California. Part 2: In situ oxygen and carbon isotopic results. Chem Geol 152: 257–271

    Google Scholar 

  • Malakoff D (2003) Cool corals become a hot topic. Science 299: 195

    Google Scholar 

  • McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53: 163–171

    Google Scholar 

  • McConnaughey T (2003) Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models. Coral Reefs 22: 316–327

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18: 849–857

    Article  Google Scholar 

  • Meibom A, Stage M, Wooden J, Constantz BR, Dunbar RB, Owen A, Grumet N, Bacon CR, Chamberlain CP (2003) Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: biological effects limiting the precision of the paleotemperature proxy. Geophys Res Lett 33: 1418. DOI 1029/2002GL016864

    Google Scholar 

  • Mikkelsen N, Erlenkeuser H, Killingley JS, Berger WH (1982) Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11: 163–171

    Google Scholar 

  • Mortensen PB, Rapp HT (1998) Oxygen and carbon isotope ratios related to growth line pattern in skeletons of Lophelia pertusa (L) (Anthozoa, Scleractinia): implications for determination of linear extension rates. Sarsia 83: 433–446

    Google Scholar 

  • Newton CR, Mullins HT, Gardulski AF, Hine AC, Dix GR (1987) Coral mounds on the West Florida slope: unanswered questions regarding the development of deep-water banks. Palaios 2: 359–367

    Google Scholar 

  • Ogilvie M (1896) Microscopic and systematic study of madreporarian types of corals. Phil Trans R Soc London 187(B): 83–345

    Google Scholar 

  • Rollion-Bard C (2001) Variabilité des isotopes de l’oxygène dans les coraux Porites: développement et implications des microanalyses d’isotopes stables (B, C et O) par sonde ionique. PhD Thesis, Inst Polytech Lorraine, Nancy, France, 165pp

    Google Scholar 

  • Rollion-Bard C, Blamart D, Cuif JP, Juillet-Leclerc A (2003a) Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22: 405–415

    Article  Google Scholar 

  • Rollion-Bard C, Chaussidon M, France-Lanord C (2003b) pH control on oxygen isotopic composition of symbiotic corals. Earth Planet Sci Lett 215: 275–218

    Article  Google Scholar 

  • Slodzian G, Daigne B, Girard F, Boust F (1987) High sensitivity and high spatial resolution ion probe instrument. In: Benninghoven A, Huber AM, Werner HW (eds) Secondary Ion Mass Spectrometry SIMSVI. Wiley & Sons, Chichester, pp 189–192

    Google Scholar 

  • Smith JE, Risk MJ, Schwarcz HP, McConnaughey TA (1997) Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. Nature 386: 818–820

    Article  Google Scholar 

  • Smith JE, Schwarcz HP, Risk MJ, McConnaughey TE, Keller N (2000) Paleotemperatures from deep-sea corals: overcoming “vital effects”. Palaios 15: 25–32

    Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390: 497–500

    Article  Google Scholar 

  • Spiro B, Roberts M, Gage J, Chenery S (2000) 18O/16O and 13C/12C in ahermatypic deep-sea water coral Lophelia pertusa from the North Atlantic: a case of disequilibrium isotope fractionation. Rapid Commun Mass Spectrom 14: 1332–1336

    Article  Google Scholar 

  • Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19: 51–80

    Article  Google Scholar 

  • Urey HC, Lowenstam HA, Epstein S, McKinney CR (1951) Measurements of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Bull Geol Soc Am 62: 399–416

    Google Scholar 

  • Usdowski E, Hoefs J (1993) Oxygen isotope exchange between carbonic acid, bicarbonate, carbonate, and water: a re-examination of the data of McCrea (1950) and an expression for the overall partitioning of oxygen isotopes between the carbonate species and water. Geochim Cosmochim Acta 57: 3815–3818.

    Article  Google Scholar 

  • Usdowski E, Michaelis J, Böttcher ME, Hoefs J (1991) Factors for the oxygen isotope equilibrium between aqueous and gaseous CO2, carbonic acid, bicarbonate, carbonate, and water (19°C). Z Phys Chem 170: 237–249

    Google Scholar 

  • Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55: 2901–2910

    Google Scholar 

  • Van Weering T, shipboard scientific party (1999) Shipboard cruise report R.V. Pelagia 64PE143: A survey of carbonate mud mounds of Porcupine Bight and S. Rockall Trough margins. NIOZ, Texel, 82 pp

    Google Scholar 

  • Wainwright SA (1963) Skeletal organization in the coral Pocillopora damicornis. Quart J Microscop Sci 104:169–183

    Google Scholar 

  • Weber JN (1973) Deep-sea scleractinian coral: isotopic composition of skeleton. Deep-Sea Res 20: 901–909

    Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100: 207–248

    Article  Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on Invertebrate Paleontology. F. Coelenterata. Geol Soc Amer, Univ Kansas Press, Lawrence, pp 353–367

    Google Scholar 

  • Wilson JB (1979) The distribution of the coral Lophelia pertusa (L.) [L. prolifera (Pallas)] in the North East Atlantic. J Mar Biol Assoc UK 59: 149–164

    Google Scholar 

  • Zeebe RE (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochim Cosmochim Acta 63: 2001–2007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blamart, D. et al. (2005). C and O isotopes in a deep-sea coral ( Lophelia pertusa) related to skeletal microstructure. In: Freiwald, A., Roberts, J.M. (eds) Cold-Water Corals and Ecosystems. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27673-4_50

Download citation

Publish with us

Policies and ethics