Skip to main content

Kappa Opioid Signaling at the Crossroads of Chronic Pain and Opioid Addiction

  • Chapter
  • First Online:
The Kappa Opioid Receptor

Abstract

Pain is complex and is a unique experience for individuals in that no two people will have exactly the same physiological and emotional response to the same noxious stimulus or injury. Pain is composed of two essential processes: a sensory component that allows for discrimination of the intensity and location of a painful stimulus and an emotional component that underlies the affective, motivational, unpleasant, and aversive response to a painful stimulus. Kappa opioid receptor (KOR) activation in the periphery and throughout the neuroaxis modulates both of these components of the pain experience. In this chapter we focus on recent findings that KORs contribute to the emotional, aversive nature of chronic pain, including how expression in the limbic circuitry contributes to anhedonic states and components of opioid misuse disorder. While the primary focus is on preclinical pain models, we also highlight clinical or human research where there is strong evidence for KOR involvement in negative affective states associated with chronic pain and opioid misuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropic hormone

BLA:

Basolateral amygdala

BNST:

Bed nucleus of the stria terminalis

CeA:

Central nucleus of the amygdala

CPA:

Conditioned place aversion

CPP:

Conditioned place preference

CRF:

Corticotropin-releasing hormone

DOR:

Delta opioid receptor

GABA:

Gamma-aminobutyric acid

GPCRs:

G-protein coupled receptors

ICSS:

Intracranial self-stimulation

JDTic:

C28H39N3O3 kappa opioid antagonist

KOR:

Kappa opioid receptor

LiCl:

Lithium chloride

MAP:

Mitogen-activated protein

MK801:

Dizocilpine, NMDA antagonist

MOR:

Mu opioid receptor

nor-BNI:

Nor-binaltorphimine, kappa opioid antagonist

NMDA:

Nucleus accumbens NAc

ORL1:

Opioid receptor-like/nociceptin receptor

PAG:

Periaqueductal gray

VTA:

Ventral tegmental area

References

  • Agostinelli LJ, Mix MR, Hefti MM, Scammell TE, Bassuk AG (2021) Input-output connections of LJA5 prodynorphin neurons. J Comp Neurol 529:635–654

    CAS  PubMed  Google Scholar 

  • Ahmadi J, Jahromi MS, Ehsaei Z (2018) The effectiveness of different singly administered high doses of buprenorphine in reducing suicidal ideation in acutely depressed people with co-morbid opiate dependence: a randomized, double-blind, clinical trial. Trials 19:462

    PubMed  PubMed Central  Google Scholar 

  • Albonaim A, Fazel H, Sharafshah A, Omarmeli V, Rezaei S, Ajamian F, Keshavarz P (2017) Association of OPRK1 gene polymorphisms with opioid dependence in addicted men undergoing methadone treatment in an Iranian population. J Addict Dis 36:227–235

    PubMed  Google Scholar 

  • Asmundson GJG, Katz J (2009) Understanding the co-occurrence of anxiety disorders and chronic pain: state-of-the-art. Depress Anxiety 26:888–901

    PubMed  Google Scholar 

  • Bagdas D, Muldoon PP, Alsharari S, Carroll FI, Negus SS, Damaj MI (2016) Expression and pharmacological modulation of visceral pain-induced conditioned place aversion in mice. Neuropharmacology 102:236–243. https://doi.org/10.1016/j.neuropharm.2015.11.024

    Article  CAS  PubMed  Google Scholar 

  • Bagley EE, Ingram SL (2020) Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 173:108131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bair MJ, Robinson RL, Katon W, Kroenke K (2003) Depression and pain comorbidity: a literature review. Arch Intern Med 163:2433–2445

    PubMed  Google Scholar 

  • Bakshi R, Newman AH, Faden AI (1990) Dynorphin A-(1-17) induces alterations in free fatty acids, excitatory amino acids, and motor function through an opiate-receptor-mediated mechanism. J Neurosci 10:3793–3800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bals-Kubik R, Ableitner A, Herz A, Shippenberg TS (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495

    CAS  PubMed  Google Scholar 

  • Barrio P, Ortega L, Guardia J, Roncero C, Yuguero L, Gual A (2018) Who receives nalmefene and how does it work in the real world? A single-arm, phase IV study of nalmefene in alcohol dependent outpatients: baseline and 1-month results. Clin Drug Investig 38:147–155

    CAS  PubMed  Google Scholar 

  • Beardsley PM, Howard JL, Shelton KL, Carroll FI (2005) Differential effects of the novel kappa opioid receptor antagonist, JDTic, on reinstatement of cocaine-seeking induced by footshock stressors vs cocaine primes and its antidepressant-like effects in rats. Psychopharmacology (Berl) 183:118–126

    CAS  Google Scholar 

  • Beaudry H, Daou I, Ase AR, Ribeiro-da-Silva A, Seguela P (2017) Distinct behavioral responses evoked by selective optogenetic stimulation of the major TRPV1+ and MrgD+ subsets of C-fibers. Pain 158:2329–2339

    CAS  PubMed  Google Scholar 

  • Bechara A, van der Kooy D (1992) A single brain stem substrate mediates the motivational effects of both opiates and food in nondeprived rats but not in deprived rats. Behav Neurosci 106:351–363

    CAS  PubMed  Google Scholar 

  • Becker WC, Ganoczy D, Fiellin DA, Bohnert ASB (2015) Buprenorphine/naloxone dose and pain intensity among individuals initiating treatment for opioid use disorder. J Subst Abuse Treat 48:128–131

    PubMed  Google Scholar 

  • Berridge KC, Kringelbach ML (2013) Neuroscience of affect: brain mechanisms of pleasure and displeasure. Curr Opin Neurobiol 23:294–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge KC, Kringelbach ML (2015) Pleasure systems in the brain. Neuron 86:646–664. https://doi.org/10.1016/j.neuron.2015.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bivehed E, Strömvall R, Bergquist J, Bakalkin G, Andersson M (2017) Region-specific bioconversion of dynorphin neuropeptide detected by in situ histochemistry and MALDI imaging mass spectrometry. Peptides 87:20–27

    CAS  PubMed  Google Scholar 

  • Bodnar RJ (2018) Endogenous opiates and behavior: 2016. Peptides 101:167–212

    CAS  PubMed  Google Scholar 

  • Borsook D, Linnman C, Faria V, Strassman AM, Becerra L, Elman I (2016) Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 68:282–297

    CAS  PubMed  Google Scholar 

  • Bossert JM, Hoots JK, Fredriksson I, Adhikary S, Zhang M, Venniro M, Shaham Y (2019) Role of mu, but not delta or kappa, opioid receptors in context-induced reinstatement of oxycodone seeking. Eur J Neurosci 50:2075–2085

    PubMed  Google Scholar 

  • Brice-Tutt AC, Wilson LL, Eans SO, Stacy HM, Simons CA, Simpson GG, Coleman JS, Ferracane MJ, Aldrich JV, McLaughlin JP (2020) Multifunctional opioid receptor agonism and antagonism by a novel macrocyclic tetrapeptide prevents reinstatement of morphine-seeking behaviour. Br J Pharmacol 177:4209–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruchas MR, Land BB, Lemos JC, Chavkin C (2009) CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS One 4:e8528

    PubMed  PubMed Central  Google Scholar 

  • Bruchas MR, Land BB, Chavkin C (2010) The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 1314:44–55. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2819621&tool=pmcentrez&rendertype=abstract. Accessed 16 Sept 2014

    CAS  PubMed  Google Scholar 

  • Buda JJ, Carroll FI, Kosten TR, Swearingen D, Walters BB (2015) A double-blind, placebo-controlled trial to evaluate the safety, tolerability, and pharmacokinetics of single, escalating oral doses of JDTic. Neuropsychopharmacology 40:2059–2065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cahill CM, Taylor AM (2017) Neuroinflammation – a co-occurring phenomenon linking chronic pain and opioid dependence. Curr Opin Behav Sci 13:171–177

    PubMed  PubMed Central  Google Scholar 

  • Cahill CM, Taylor AMW, Cook C, Ong E, Morón JA, Evans CJ (2014) Does the kappa opioid receptor system contribute to pain aversion? Front Pharmacol 5:253. http://journal.frontiersin.org/article/10.3389/fphar.2014.00253/abstract

    PubMed  PubMed Central  Google Scholar 

  • Calzà L, Pozza M, Zanni M, Manzini CU, Manzini E, Hökfelt T (1998) Peptide plasticity in primary sensory neurons and spinal cord during adjuvant-induced arthritis in the rat: an immunocytochemical and in situ hybridization study. Neuroscience 82:575–589

    PubMed  Google Scholar 

  • Carlezon WAJ, Krystal AD (2016) Kappa-opioid antagonists for psychiatric disorders: from bench to clinical trials. Depress Anxiety 33:895–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano C, Ammassari-Teule M, Libri V, Pavone F (1988) Effects of kappa-opioid receptor agonists on locomotor activity and memory processes in mice. Pol J Pharmacol Pharm 40:507–513

    CAS  PubMed  Google Scholar 

  • Caudle RM, Dubner R (1998) Ifenprodil blocks the excitatory effects of the opioid peptide dynorphin 1-17 on NMDA receptor-mediated currents in the CA3 region of the guinea pig hippocampus. Neuropeptides 32:87–95

    CAS  PubMed  Google Scholar 

  • Chartoff EH, Mavrikaki M (2015) Sex differences in kappa opioid receptor function and their potential impact on addiction. Front Neurosci 9:466. http://journal.frontiersin.org/article/10.3389/fnins.2015.00466

    PubMed  PubMed Central  Google Scholar 

  • Chartoff EH, Ebner SR, Sparrow A, Potter D, Baker PM, Ragozzino ME, Roitman MF (2016) Relative timing between kappa opioid receptor activation and cocaine determines the impact on reward and dopamine release. Neuropsychopharmacology 41:989–1002

    CAS  PubMed  Google Scholar 

  • Chavkin C, Koob GF (2016) Dynorphin, dysphoria, and dependence: the stress of addiction. Neuropsychopharmacology 41:373–374

    CAS  PubMed  Google Scholar 

  • Che T et al (2018) Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 172:55–67.e15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chefer VI, Backman CM, Gigante ED, Shippenberg TS (2013) Kappa opioid receptors on dopaminergic neurons are necessary for kappa-mediated place aversion. Neuropsychopharmacology 38:2623–2631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang MC, Nguyen EK, Canto-Bustos M, Papale AE, Oswald A-MM, Ross SE (2020) Divergent neural pathways emanating from the lateral parabrachial nucleus mediate distinct components of the pain response. Neuron 106:927–939.e5

    CAS  PubMed  Google Scholar 

  • Conway SM, Puttick D, Russell S, Potter D, Roitman MF, Chartoff EH (2019) Females are less sensitive than males to the motivational- and dopamine-suppressing effects of kappa opioid receptor activation. Neuropharmacology 146:231–241

    CAS  PubMed  Google Scholar 

  • Corder G, Ahanonu B, Grewe BF, Wang D, Schnitzer MJ, Scherrer G (2019) An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363:276–281

    CAS  PubMed  Google Scholar 

  • Cordery SF, Taverner A, Ridzwan IE, Guy RH, Delgado-Charro MB, Husbands SM, Bailey CP (2014) A non-rewarding, non-aversive buprenorphine/naltrexone combination attenuates drug-primed reinstatement to cocaine and morphine in rats in a conditioned place preference paradigm. Addict Biol 19:575–586

    CAS  PubMed  Google Scholar 

  • Crowley NA, Kash TL (2015) Kappa opioid receptor signaling in the brain: circuitry and implications for treatment. Prog Neuropsychopharmacol Biol Psychiatry 62:51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley NA, Bloodgood DW, Hardaway JA, Kendra AM, McCall JG, Al-Hasani R, McCall NM, Yu W, Schools ZL, Krashes MJ, Lowell BB, Whistler JL, Bruchas MR, Kash TL (2016) Dynorphin controls the gain of an amygdalar anxiety circuit. Cell Rep 14:2774–2783. http://linkinghub.elsevier.com/retrieve/pii/S2211124716302042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daou I, Tuttle AH, Longo G, Wieskopf JS, Bonin RP, Ase AR, Wood JN, De Koninck Y, Ribeiro-da-Silva A, Mogil JS, Seguela P (2013) Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci 33:18631–18640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darcq E, Kieffer BL (2018) Opioid receptors: drivers to addiction? Nat Rev Neurosci 19:499–514

    CAS  PubMed  Google Scholar 

  • Davis MP, Pasternak G, Behm B (2018) Treating chronic pain: an overview of clinical studies centered on the buprenorphine option. Drugs 78:1211–1228

    PubMed  PubMed Central  Google Scholar 

  • Donahue RJ, Landino SM, Golden SA, Carroll FI, Russo SJ, Carlezon WAJ (2015) Effects of acute and chronic social defeat stress are differentially mediated by the dynorphin/kappa-opioid receptor system. Behav Pharmacol 26:654–663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly CR, Andriessen AS, Chen G, Wang K, Jiang C, Maixner W, Ji R-R (2020) Central nervous system targets: glial cell mechanisms in chronic pain. Neurotherapeutics 17:846–860

    PubMed  PubMed Central  Google Scholar 

  • Draisci G, Kajander KC, Dubner R, Bennett GJ, Iadarola MJ (1991) Up-regulation of opioid gene expression in spinal cord evoked by experimental nerve injuries and inflammation. Brain Res 560:186–192

    CAS  PubMed  Google Scholar 

  • Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-Campmany L, Krashes M, Knowlton W, Velasquez T, Ren X, Ross S, Lowell BB, Wang Y, Goulding M, Ma Q (2014) Identification of spinal circuits transmitting and gating mechanical pain. Cell 159:1417–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebner SR, Roitman MF, Potter DN, Rachlin AB, Chartoff EH (2010) Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology (Berl) 210:241–252

    CAS  Google Scholar 

  • Ehrich E, Turncliff R, Du Y, Leigh-Pemberton R, Fernandez E, Jones R, Fava M (2015a) Evaluation of opioid modulation in major depressive disorder. Neuropsychopharmacology 40:1448–1455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrich JM, Messinger DI, Knakal CR, Kuhar JR, Schattauer SS, Bruchas MR, Zweifel LS, Kieffer BL, Phillips PEM, Chavkin C (2015b) Kappa opioid receptor-induced aversion requires p38 MAPK activation in VTA dopamine neurons. J Neurosci 35:12917–12931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eidson LN, Murphy AZ (2019) Inflammatory mediators of opioid tolerance: implications for dependency and addiction. Peptides 115:51–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elman I, Borsook D, Volkow ND (2013) Pain and suicidality: insights from reward and addiction neuroscience. Prog Neurobiol 109:1–27

    PubMed  PubMed Central  Google Scholar 

  • España RA, Schmeichel BE, Berridge CW (2016) Norepinephrine at the nexus of arousal, motivation and relapse. Brain Res 1641:207–216

    PubMed  PubMed Central  Google Scholar 

  • Evans CJ, Cahill CM (2016) Neurobiology of opioid dependence in creating addiction vulnerability [version 1; referees: 3 approved]. F1000Research 5

    Google Scholar 

  • Fava M, Memisoglu A, Thase ME, Bodkin JA, Trivedi MH, de Somer M, Du Y, Leigh-Pemberton R, DiPetrillo L, Silverman B, Ehrich E (2016) Opioid modulation with buprenorphine/samidorphan as adjunctive treatment for inadequate response to antidepressants: a randomized double-blind placebo-controlled trial. Am J Psychiatry 173:499–508

    PubMed  Google Scholar 

  • Ferracane MJ, Brice-Tutt AC, Coleman JS, Simpson GG, Wilson LL, Eans SO, Stacy HM, Murray TF, McLaughlin JP, Aldrich JV (2020) Design, synthesis, and characterization of the macrocyclic tetrapeptide cyclo[Pro-Sar-Phe-d-Phe]: a mixed opioid receptor agonist-antagonist following oral administration. ACS Chem Nerosci 11:1324–1336

    CAS  Google Scholar 

  • Funk D, Coen K, Lê AD (2014) The role of kappa opioid receptors in stress-induced reinstatement of alcohol seeking in rats. Brain Behav 4:356–367

    PubMed  PubMed Central  Google Scholar 

  • Funk D, Coen K, Tamadon S, Lê AD (2019a) Effects of the alpha-1 antagonist prazosin on KOR agonist-induced reinstatement of alcohol seeking. Int J Neuropsychopharmacol 22:724–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funk D, Coen K, Tamadon S, Lê AD (2019b) Effect of chronic alcohol vapor exposure on reinstatement of alcohol seeking induced by U50,488. Neuropharmacology 148:210–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardell LR, Ibrahim M, Wang R, Wang Z, Ossipov MH, Malan TPJ, Porreca F, Lai J (2004) Mouse strains that lack spinal dynorphin upregulation after peripheral nerve injury do not develop neuropathic pain. Neuroscience 123:43–52

    CAS  PubMed  Google Scholar 

  • Gavériaux-Ruff C, Karchewski LA, Hever X, Matifas A, Kieffer BL (2008) Inflammatory pain is enhanced in delta opioid receptor-knockout mice. Eur J Neurosci 27:2558–2567

    PubMed  PubMed Central  Google Scholar 

  • Ge Y, Lundeberg T, Yu L-C (2002) Blockade effect of mu and kappa opioid antagonists on the anti-nociception induced by intra-periaqueductal grey injection of oxytocin in rats. Brain Res 927:204–207

    CAS  PubMed  Google Scholar 

  • Gerra G, Leonardi C, Cortese E, D’Amore A, Lucchini A, Strepparola G, Serio G, Farina G, Magnelli F, Zaimovic A, Mancini A, Turci M, Manfredini M, Donnini C (2007) Human kappa opioid receptor gene (OPRK1) polymorphism is associated with opiate addiction. Am J Med Genet B Neuropsychiatr Genet 144B:771–775

    CAS  PubMed  Google Scholar 

  • Glick SD, Maisonneuve IM, Raucci J, Archer S (1995) Kappa opioid inhibition of morphine and cocaine self-administration in rats. Brain Res 681:147–152

    CAS  PubMed  Google Scholar 

  • Grella SL, Funk D, Coen K, Li Z, Lê AD (2014) Role of the kappa-opioid receptor system in stress-induced reinstatement of nicotine seeking in rats. Behav Brain Res 265:188–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin ML, McDermott KA, McHugh RK, Fitzmaurice GM, Jamison RN, Weiss RD (2016) Longitudinal association between pain severity and subsequent opioid use in prescription opioid dependent patients with chronic pain. Drug Alcohol Depend 163:216–221

    PubMed  PubMed Central  Google Scholar 

  • He Y, Lu Y, Shen Y, Wu F, Xu X, Kong E, Huang Z, Sun Y, Yu W (2019) Transgenic increase in the β-endorphin concentration in cerebrospinal fluid alleviates morphine-primed relapse behavior through the μ opioid receptor in rats. J Med Virol 91:1158–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinsbroek JA, Furbish AB, Peters J (2018) A single, extinction-based treatment with a kappa opioid receptor agonist elicits a long-term reduction in cocaine relapse. Neuropsychopharmacology 43:1492–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heo Y-A, Scott LJ (2018) Buprenorphine/naloxone (Zubsolv(®)): a review in opioid dependence. CNS Drugs 32:875–882

    CAS  PubMed  Google Scholar 

  • Higgins C, Smith BH, Matthews K (2020) Comparison of psychiatric comorbidity in treatment-seeking, opioid-dependent patients with versus without chronic pain. Addiction 115:249–258

    PubMed  Google Scholar 

  • Hipólito L, Wilson-Poe A, Campos-Jurado Y, Zhong E, Gonzalez-Romero J, Virag L, Whittington R, Comer SD, Carlton SM, Walker BM, Bruchas MR, Morón JA (2015) Inflammatory pain promotes increased opioid self-administration: role of dysregulated ventral tegmental area μ opioid receptors. J Neurosci 35:12217–12231

    PubMed  PubMed Central  Google Scholar 

  • Hjelmstad GO, Fields HL (2001) Kappa opioid receptor inhibition of glutamatergic transmission in the nucleus accumbens shell. J Neurophysiol 85:1153–1158

    CAS  PubMed  Google Scholar 

  • Howe CQ, Sullivan MD (2014) The missing “P” in pain management: how the current opioid epidemic highlights the need for psychiatric services in chronic pain care. Gen Hosp Psychiatry 36:99–104

    PubMed  Google Scholar 

  • Hser Y-I, Mooney LJ, Saxon AJ, Miotto K, Bell DS, Huang D (2017) Chronic pain among patients with opioid use disorder: results from electronic health records data. J Subst Abuse Treat 77:26–30

    PubMed  PubMed Central  Google Scholar 

  • Hua T, Chen B, Lu D, Sakurai K, Zhao S, Han B-X, Kim J, Yin L, Chen Y, Lu J, Wang F (2020) General anesthetics activate a potent central pain-suppression circuit in the amygdala. Nat Neurosci 23:854–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hummel M, Lu P, Cummons TA, Whiteside GT (2008) The persistence of a long-term negative affective state following the induction of either acute or chronic pain. Pain 140:436–445. https://doi.org/10.1016/j.pain.2008.09.020

    Article  PubMed  Google Scholar 

  • Hurd YL, Herman MM, Hyde TM, Bigelow LB, Weinberger DR, Kleinman JE (1997) Prodynorphin mRNA expression is increased in the patch vs matrix compartment of the caudate nucleus in suicide subjects. Mol Psychiatry 2:495–500

    CAS  PubMed  Google Scholar 

  • Hylden JL, Nahin RL, Traub RJ, Dubner R (1991) Effects of spinal kappa-opioid receptor agonists on the responsiveness of nociceptive superficial dorsal horn neurons. Pain 44:187–193

    CAS  PubMed  Google Scholar 

  • Iadarola MJ, Brady LS, Draisci G, Dubner R (1988a) Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: stimulus specificity, behavioral parameters and opioid receptor binding. Pain 35:313–326. http://www.ncbi.nlm.nih.gov/pubmed/2906426. Accessed 1 Oct 2014

    CAS  PubMed  Google Scholar 

  • Iadarola MJ, Douglass J, Civelli O, Naranjo JR (1988b) Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: evidence using cDNA hybridization. Brain Res 455:205–212

    CAS  PubMed  Google Scholar 

  • Iyer SM, Montgomery KL, Towne C, Lee SY, Ramakrishnan C, Deisseroth K, Delp SL (2014) Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat Biotechnol 32:274–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson KJ, McLaughlin JP, Carroll FI, Damaj MI (2013) Effects of the kappa opioid receptor antagonist, norbinaltorphimine, on stress and drug-induced reinstatement of nicotine-conditioned place preference in mice. Psychopharmacology (Berl) 226:763–768

    CAS  Google Scholar 

  • Jamison RN, Edwards RR (2013) Risk factor assessment for problematic use of opioids for chronic pain. Clin Neuropsychol 27:60–80

    PubMed  Google Scholar 

  • Jarcho JM, Mayer EA, Jiang ZK, Feier NA, London ED (2012) Pain, affective symptoms, and cognitive deficits in patients with cerebral dopamine dysfunction. Pain 153:744–754

    CAS  PubMed  Google Scholar 

  • Ji R-R, Donnelly CR, Nedergaard M (2019) Astrocytes in chronic pain and itch. Nat Rev Neurosci 20:667–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kajander KC, Sahara Y, Iadarola MJ, Bennett GJ (1990) Dynorphin increases in the dorsal spinal cord in rats with a painful peripheral neuropathy. Peptides 11:719–728

    CAS  PubMed  Google Scholar 

  • Kenny PJ, Chen SA, Kitamura O, Markou A, Koob GF (2006) Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci 26:5894–5900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kieffer BL (1999) Opioids: first lessons from knockout mice. Trends Pharmacol Sci 20:19–26

    CAS  PubMed  Google Scholar 

  • Knoll AT, Carlezon WA (2010) Dynorphin, stress, and depression. Brain Res 1314:56–73. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2819644&tool=pmcentrez&rendertype=abstract. Accessed 5 Sept 2014

    CAS  PubMed  Google Scholar 

  • Knox RJ, Dickenson AH (1987) Effects of selective and non-selective kappa-opioid receptor agonists on cutaneous C-fibre-evoked responses of rat dorsal horn neurones. Brain Res 415:21–29

    CAS  PubMed  Google Scholar 

  • Koob GF (2020) Neurobiology of opioid addiction: opponent process, hyperkatifeia, and negative reinforcement. Biol Psychiatry 87:44–53

    CAS  PubMed  Google Scholar 

  • Kumor KM, Haertzen CA, Johnson RE, Kocher T, Jasinski D (1986) Human psychopharmacology of ketocyclazocine as compared with cyclazocine, morphine and placebo. J Pharmacol Exp Ther 238:960–968

    CAS  PubMed  Google Scholar 

  • LaBuda CJ, Fuchs PN (2000) A behavioral test paradigm to measure the aversive quality of inflammatory and neuropathic pain in rats. Exp Neurol 163:490–494

    CAS  PubMed  Google Scholar 

  • Lai J, Luo M-C, Chen Q, Ma S, Gardell LR, Ossipov MH, Porreca F (2006) Dynorphin A activates bradykinin receptors to maintain neuropathic pain. Nat Neurosci 9:1534–1540

    CAS  PubMed  Google Scholar 

  • Land BB, Bruchas MR, Schattauer S, Giardino WJ, Aita M, Messinger D, Hnasko TS, Palmiter RD, Chavkin C (2009) Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proc Natl Acad Sci U S A 106:19168–19173. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2776420&tool=pmcentrez&rendertype=abstract

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latif Z-E-H, Solli KK, Opheim A, Kunoe N, Benth JŠ, Krajci P, Sharma-Haase K, Tanum L (2019) No increased pain among opioid-dependent individuals treated with extended-release naltrexone or buprenorphine-naloxone: a 3-month randomized study and 9-month open-treatment follow-up study. Am J Addict 28:77–85

    PubMed  Google Scholar 

  • Laughlin TM, Vanderah TW, Lashbrook J, Nichols ML, Ossipov M, Porreca F, Wilcox GL (1997) Spinally administered dynorphin A produces long-lasting allodynia: involvement of NMDA but not opioid receptors. Pain 72:253–260

    CAS  PubMed  Google Scholar 

  • Lê AD, Funk D, Coen K, Tamadon S, Shaham Y (2018) Role of κ-opioid receptors in the bed nucleus of stria terminalis in reinstatement of alcohol seeking. Neuropsychopharmacology 43:838–850

    PubMed  Google Scholar 

  • Lee YS, Hall SM, Ramos-Colon C, Remesic M, Rankin D, Vanderah TW, Porreca F, Lai J, Hruby VJ (2015) Blockade of non-opioid excitatory effects of spinal dynorphin A at bradykinin receptors. Recept Clin Investig 2(1):517

    Google Scholar 

  • Lefler Y, Campagner D, Branco T (2020) The role of the periaqueductal gray in escape behavior. Curr Opin Neurobiol 60:115–121

    CAS  PubMed  Google Scholar 

  • Leitl MD, Onvani S, Bowers MS, Cheng K, Rice KC, Carlezon WA, Banks ML, Negus SS (2014a) Pain-related depression of the mesolimbic dopamine system in rats: expression, blockade by analgesics, and role of endogenous κ-opioids. Neuropsychopharmacology 39:614–624. http://www.ncbi.nlm.nih.gov/pubmed/24008352. Accessed 1 Oct 2014

    CAS  PubMed  Google Scholar 

  • Leitl MD, Potter DN, Cheng K, Rice KC, Carlezon WA, Negus SS (2014b) Sustained pain-related depression of behavior: effects of intraplantar formalin and complete freund’s adjuvant on intracranial self-stimulation (ICSS) and endogenous kappa opioid biomarkers in rats. Mol Pain 10:62. http://www.ncbi.nlm.nih.gov/pubmed/25245060. Accessed 3 Oct 2014

    PubMed  PubMed Central  Google Scholar 

  • Levran O, Londono D, O’Hara K, Nielsen DA, Peles E, Rotrosen J, Casadonte P, Linzy S, Randesi M, Ott J, Adelson M, Kreek MJ (2008) Genetic susceptibility to heroin addiction: a candidate gene association study. Genes Brain Behav 7:720–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Kash TL (2019) κ-opioid receptor modulation of GABAergic inputs onto ventrolateral periaqueductal gray dopamine neurons. Mol Neuropsychiatry 5:190–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SS et al (2019) Kappa opioid receptors drive a tonic aversive component of chronic pain. J Neurosci 39(21):4162–4178

    PubMed  Google Scholar 

  • Llorca-Torralba M, Pilar-Cuéllar F, da Silva BG, Mico JA, Berrocoso E (2020) Opioid receptors mRNAs expression and opioids agonist-dependent G-protein activation in the rat brain following neuropathy. Prog Neuropsychopharmacol Biol Psychiatry 99:109857

    CAS  PubMed  Google Scholar 

  • Lowe SL, Wong CJ, Witcher J, Gonzales CR, Dickinson GL, Bell RL, Rorick-Kehn L, Weller M, Stoltz RR, Royalty J, Tauscher-Wisniewski S (2014) Safety, tolerability, and pharmacokinetic evaluation of single- and multiple-ascending doses of a novel kappa opioid receptor antagonist LY2456302 and drug interaction with ethanol in healthy subjects. J Clin Pharmacol 54:968–978

    CAS  PubMed  Google Scholar 

  • Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26:193–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malan TP, Ossipov MH, Gardell LR, Ibrahim M, Bian D, Lai J, Porreca F (2000) Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats. Pain 86:185–194

    CAS  PubMed  Google Scholar 

  • Maraschin JC, Almeida CB, Rangel MP, Roncon CM, Sestile CC, Zangrossi HJ, Graeff FG, Audi EA (2017) Participation of dorsal periaqueductal gray 5-HT1A receptors in the panicolytic-like effect of the κ-opioid receptor antagonist Nor-BNI. Behav Brain Res 327:75–82

    CAS  PubMed  Google Scholar 

  • Margolis EB, Karkhanis AN (2019) Dopaminergic cellular and circuit contributions to kappa opioid receptor mediated aversion. Neurochem Int 129:104504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martel MO, Jamison RN, Wasan AD, Edwards RR (2014) The association between catastrophizing and craving in patients with chronic pain prescribed opioid therapy: a preliminary analysis. Pain Med 15:1757–1764

    PubMed  Google Scholar 

  • Mason BJ, Salvato FR, Williams LD, Ritvo EC, Cutler RB (1999) A double-blind, placebo-controlled study of oral nalmefene for alcohol dependence. Arch Gen Psychiatry 56:719–724

    CAS  PubMed  Google Scholar 

  • Massaly N et al (2019) Pain-induced negative affect is mediated via recruitment of the nucleus accumbens kappa opioid system. Neuron 102(3):564–573.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews GA, Nieh EH, Vander Weele CM, Halbert SA, Pradhan RV, Yosafat AS, Glober GF, Izadmehr EM, Thomas RE, Lacy GD, Wildes CP, Ungless MA, Tye KM (2016) Dorsal raphe dopamine neurons represent the experience of social isolation. Cell 164:617–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin JP, Land BB, Li S, Pintar JE, Chavkin C (2006) Prior activation of kappa opioid receptors by U50,488 mimics repeated forced swim stress to potentiate cocaine place preference conditioning. Neuropsychopharmacology 31:787–794

    CAS  PubMed  Google Scholar 

  • Mello NK, Negus SS (2000) Interactions between kappa opioid agonists and cocaine. Preclinical studies. Ann N Y Acad Sci 909:104–132

    CAS  PubMed  Google Scholar 

  • Mika J, Rojewska E, Makuch W, Przewlocka B (2010) Minocycline reduces the injury-induced expression of prodynorphin and pronociceptin in the dorsal root ganglion in a rat model of neuropathic pain. Neuroscience 165:1420–1428

    CAS  PubMed  Google Scholar 

  • Millan MJ, Millan MH, Pilcher CW, Członkowski A, Herz A, Colpaert FC (1985) Spinal cord dynorphin may modulate nociception via a kappa-opioid receptor in chronic arthritic rats. Brain Res 340:156–159

    CAS  PubMed  Google Scholar 

  • Millan MJ, Millan MH, Członkowski A, Höllt V, Pilcher CW, Herz A, Colpaert FC (1986) A model of chronic pain in the rat: response of multiple opioid systems to adjuvant-induced arthritis. J Neurosci 6:899–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millan MJ, Członkowski A, Pilcher CW, Almeida OF, Millan MH, Colpaert FC, Herz A (1987) A model of chronic pain in the rat: functional correlates of alterations in the activity of opioid systems. J Neurosci 7:77–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millan MJ, Członkowski A, Morris B, Stein C, Arendt R, Huber A, Höllt V, Herz A (1988) Inflammation of the hind limb as a model of unilateral, localized pain: influence on multiple opioid systems in the spinal cord of the rat. Pain 35:299–312

    CAS  PubMed  Google Scholar 

  • Miyata H, Takahashi M, Murai Y, Tsuneyoshi K, Hayashi T, Meulien D, Sørensen P, Higuchi S (2019) Nalmefene in alcohol-dependent patients with a high drinking risk: randomized controlled trial. Psychiatry Clin Neurosci 73:697–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mokhtar M, Singh P (2020) Neuroanatomy, periaqueductal gray. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Morani AS, Kivell B, Prisinzano TE, Schenk S (2009) Effect of kappa-opioid receptor agonists U69593, U50488H, spiradoline and salvinorin A on cocaine-induced drug-seeking in rats. Pharmacol Biochem Behav 94:244–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nahin RL, Hylden JL, Humphrey E (1992) Demonstration of dynorphin A 1-8 immunoreactive axons contacting spinal cord projection neurons in a rat model of peripheral inflammation and hyperalgesia. Pain 51:135–143

    CAS  PubMed  Google Scholar 

  • Nakamoto K, Taniguchi A, Tokuyama S (2020) Changes in opioid receptors, opioid peptides and morphine antinociception in mice subjected to early life stress. Eur J Pharmacol 881:173173

    CAS  PubMed  Google Scholar 

  • Narita M, Kishimoto Y, Ise Y, Yajima Y, Misawa K, Suzuki T (2005) Direct evidence for the involvement of the mesolimbic kappa-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology 30:111–118. http://www.ncbi.nlm.nih.gov/pubmed/15257306. Accessed 1 Oct 2014

    CAS  PubMed  Google Scholar 

  • Narita M, Kaneko C, Miyoshi K, Nagumo Y, Kuzumaki N, Nakajima M, Nanjo K, Matsuzawa K, Yamazaki M, Suzuki T (2006) Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology 31:739–750

    CAS  PubMed  Google Scholar 

  • Navratilova E, Xie JY, Meske D, Qu C, Morimura K, Okun A, Arakawa N, Ossipov M, Fields HL, Porreca F (2015) Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J Neurosci 35:7264–7271. http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3862-14.2015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navratilova E, Ji G, Phelps C, Qu C, Hein M, Yakhnitsa V, Neugebauer V, Porreca F (2019) Kappa opioid signaling in the central nucleus of the amygdala promotes disinhibition and aversiveness of chronic neuropathic pain. Pain 160:824–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Negrete R, Garcia Gutierrez MS, Manzanares J, Maldonado R (2016) Involvement of the dynorphin/KOR system on the nociceptive, emotional and cognitive manifestations of joint pain in mice. Neuropharmacology 116:315–327

    PubMed  Google Scholar 

  • Negus SS, Henriksen SJ, Mattox A, Pasternak GW, Portoghese PS, Takemori AE, Weinger MB, Koob GF (1993) Effect of antagonists selective for mu, delta and kappa opioid receptors on the reinforcing effects of heroin in rats. J Pharmacol Exp Ther 265:1245–1252

    CAS  PubMed  Google Scholar 

  • Negus SS, Mello NK, Portoghese PS, Lin CE (1997) Effects of kappa opioids on cocaine self-administration by rhesus monkeys. J Pharmacol Exp Ther 282:44–55

    CAS  PubMed  Google Scholar 

  • Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F (2020) Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 170:108052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann AM, Blondell RD, Jaanimägi U, Giambrone AK, Homish GG, Lozano JR, Kowalik U, Azadfard M (2013) A preliminary study comparing methadone and buprenorphine in patients with chronic pain and coexistent opioid addiction. J Addict Dis 32:68–78

    PubMed  PubMed Central  Google Scholar 

  • Nwaneshiudu CA, Shi X-Y, Clark JD (2020) Incisional injury modulates morphine reward and morphine-primed reinstatement: a role of kappa opioid receptor activation. Anesth Analg 130:248–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nygard SK, Hourguettes NJ, Sobczak GG, Carlezon WA, Bruchas MR (2016) Stress-induced reinstatement of nicotine preference requires dynorphin/kappa opioid activity in the basolateral amygdala. J Neurosci 36:9937–9948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki S, Narita M, Narita M, Iino M, Sugita J, Matsumura Y, Suzuki T (2002) Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: implication of the reduction in mu-opioid receptor functions in the ventral tegmental area. J Neurochem 82:1192–1198

    CAS  PubMed  Google Scholar 

  • Palmisano M, Caputi FF, Mercatelli D, Romualdi P, Candeletti S (2018) Dynorphinergic system alterations in the corticostriatal circuitry of neuropathic mice support its role in the negative affective component of pain. Genes Brain Behav:e12467

    Google Scholar 

  • Parida S, Carroll KM, Petrakis IL, Sofuoglu M (2019) Buprenorphine treatment for opioid use disorder: recent progress. Expert Rev Clin Pharmacol 12:791–803

    CAS  PubMed  Google Scholar 

  • Park S II et al (2015) Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol 33:1280–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peirs C, Seal RP (2016) Neural circuits for pain: recent advances and current views. Science 354:578–584

    CAS  PubMed  Google Scholar 

  • Pergolizzi JVJ, Raffa RB (2019) Safety and efficacy of the unique opioid buprenorphine for the treatment of chronic pain. J Pain Res 12:3299–3317

    CAS  PubMed  Google Scholar 

  • Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233:774–776. http://www.ncbi.nlm.nih.gov/pubmed/3016896. Accessed 25 Sept 2014

    CAS  PubMed  Google Scholar 

  • Phelps CE, Navratilova E, Dickenson AH, Porreca F, Bannister K (2019) Kappa opioid signaling in the right central amygdala causes hind paw specific loss of diffuse noxious inhibitory controls in experimental neuropathic pain. Pain 160:1614–1621

    CAS  PubMed  Google Scholar 

  • Podvin S, Yaksh T, Hook V (2016) The emerging role of spinal dynorphin in chronic pain: a therapeutic perspective. Annu Rev Pharmacol Toxicol 56:511–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polter AM, Bishop RA, Briand LA, Graziane NM, Pierce RC, Kauer JA (2014) Poststress block of kappa opioid receptors rescues long-term potentiation of inhibitory synapses and prevents reinstatement of cocaine seeking. Biol Psychiatry 76:785–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quelch DR, Mick I, McGonigle J, Ramos AC, Flechais RSA, Bolstridge M, Rabiner E, Wall MB, Newbould RD, Steiniger-Brach B, van den Berg F, Boyce M, Østergaard Nilausen D, Breuning Sluth L, Meulien D, von der Goltz C, Nutt D, Lingford-Hughes A (2017) Nalmefene reduces reward anticipation in alcohol dependence: an experimental functional magnetic resonance imaging study. Biol Psychiatry 81:941–948

    CAS  PubMed  Google Scholar 

  • Redila VA, Chavkin C (2008) Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology (Berl) 200:59–70

    CAS  Google Scholar 

  • Rosén A, Lundeberg T, Bytner B, Nylander I (2000) Central changes in nociceptin dynorphin B and Met-enkephalin-Arg-Phe in different models of nociception. Brain Res 857:212–218

    PubMed  Google Scholar 

  • Rosenblum A, Cruciani RA, Strain EC, Cleland CM, Joseph H, Magura S, Marsch LA, McNicholas LF, Savage SR, Sundaram A, Portenoy RK (2012) Sublingual buprenorphine/naloxone for chronic pain in at-risk patients: development and pilot test of a clinical protocol. J Opioid Manag 8:369–382

    PubMed  PubMed Central  Google Scholar 

  • Roux P, Sullivan MA, Cohen J, Fugon L, Jones JD, Vosburg SK, Cooper ZD, Manubay JM, Mogali S, Comer SD (2013) Buprenorphine/naloxone as a promising therapeutic option for opioid abusing patients with chronic pain: reduction of pain, opioid withdrawal symptoms, and abuse liability of oral oxycodone. Pain 154:1442–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruda MA, Iadarola MJ, Cohen LV, Young WS 3rd (1988) In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. Proc Natl Acad Sci U S A 85:622–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rüedi-Bettschen D, Rowlett JK, Spealman RD, Platt DM (2010) Attenuation of cocaine-induced reinstatement of drug seeking in squirrel monkeys: kappa opioid and serotonergic mechanisms. Psychopharmacology (Berl) 210:169–177

    Google Scholar 

  • Samuelsson H, Ekman R, Hedner T (1993) CSF neuropeptides in cancer pain: effects of spinal opioid therapy. Acta Anaesthesiol Scand 37:502–508

    CAS  PubMed  Google Scholar 

  • Sapio MR, Iadarola MJ, Loydpierson AJ, Kim JJ, Thierry-Mieg D, Thierry-Mieg J, Maric D, Mannes AJ (2020) Dynorphin and enkephalin opioid peptides and transcripts in spinal cord and dorsal root ganglion during peripheral inflammatory hyperalgesia and allodynia. J Pain 21(9–10):988–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sardella TCP, Polgár E, Garzillo F, Furuta T, Kaneko T, Watanabe M, Todd AJ (2011) Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Mol Pain 7:76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk S, Partridge B (2001) Effect of the kappa-opioid receptor agonist, U69593, on reinstatement of extinguished amphetamine self-administration behavior. Pharmacol Biochem Behav 68:629–634

    CAS  PubMed  Google Scholar 

  • Schenk S, Partridge B, Shippenberg TS (1999) U69593, a kappa-opioid agonist, decreases cocaine self-administration and decreases cocaine-produced drug-seeking. Psychopharmacology (Berl) 144:339–346

    CAS  Google Scholar 

  • Sedki F, Eigenmann K, Gelinas J, Schouela N, Courchesne S, Shalev U (2015) A role for kappa-, but not mu-opioid, receptor activation in acute food deprivation-induced reinstatement of heroin seeking in rats. Addict Biol 20:423–432

    CAS  PubMed  Google Scholar 

  • Shippenberg TS, Herz A (1986) Differential effects of mu and kappa opioid systems on motivational processes. NIDA Res Monogr 75:563–566

    CAS  PubMed  Google Scholar 

  • Shippenberg TS, Stein C, Huber A, Millan MJ, Herz A (1988) Motivational effects of opioids in an animal model of prolonged inflammatory pain: alteration in the effects of kappa- but not of mu-receptor agonists. Pain 35:179–186

    CAS  PubMed  Google Scholar 

  • Shippenberg TS, Bals-Kubik R, Herz A (1993) Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J Pharmacol Exp Ther 265:53–59. http://www.ncbi.nlm.nih.gov/pubmed/8386244. Accessed 3 Oct 2014

    CAS  PubMed  Google Scholar 

  • Shirayama Y, Ishida H, Iwata M, Hazama G-I, Kawahara R, Duman RS (2004) Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects. J Neurochem 90:1258–1268

    CAS  PubMed  Google Scholar 

  • Shulman M, Luo S, Campbell ANC, Scodes J, Pavlicova M, Broffman A, Saxon AJ, Nunes EV (2020) Secondary analysis of pain outcomes in a large pragmatic randomized trial of buprenorphine/naloxone versus methadone for opioid use disorder. J Addict Med 14(5):e188–e194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonin F, Valverde O, Smadja C, Slowe S, Kitchen I, Dierich A, Le Meur M, Roques BP, Maldonado R, Kieffer BL (1998) Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal. EMBO J 17:886–897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sluka KA, Rohlwing JJ, Bussey RA, Eikenberry SA, Wilken JM (2002) Chronic muscle pain induced by repeated acid Injection is reversed by spinally administered mu- and delta-, but not kappa-, opioid receptor agonists. J Pharmacol Exp Ther 302:1146–1150

    CAS  PubMed  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci U S A 89:2046–2050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Standaert DG, Watson SJ, Houghten RA, Saper CB (1986) Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat. J Neurosci 6:1220–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley B, Sher L, Wilson S, Ekman R, Huang Y, Mann JJ (2010) Non-suicidal self-injurious behavior, endogenous opioids and monoamine neurotransmitters. J Affect Disord 124:134–140

    CAS  PubMed  Google Scholar 

  • Taylor AMW, Castonguay A, Taylor AJ, Murphy NP, Ghogha A, Cook C, Xue L, Olmstead MC, de Koninck Y, Evans CJ, Cahill CM (2015) Microglia disrupt mesolimbic reward circuitry in chronic pain. J Neurosci 35:8442–8450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AMW, Becker S, Schweinhardt P, Cahill C (2016) Mesolimbic dopamine signaling in acute and chronic pain: implications for motivation, analgesia, and addiction. Pain 157(6):1194–1198

    PubMed  PubMed Central  Google Scholar 

  • Tejeda HA, Bonci A (2018) Dynorphin/kappa-opioid receptor control of dopamine dynamics: implications for negative affective states and psychiatric disorders. Brain Res

    Google Scholar 

  • Tejeda HA, Counotte DS, Oh E, Ramamoorthy S, Schultz-Kuszak KN, Bäckman CM, Chefer V, O’Donnell P, Shippenberg TS (2013) Prefrontal cortical kappa-opioid receptor modulation of local neurotransmission and conditioned place aversion. Neuropsychopharmacology 38:1770–1779. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3717537&tool=pmcentrez&rendertype=abstract. Accessed 1 Oct 2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tejeda HA, Hanks AN, Scott L, Mejias-Aponte C, Hughes ZA, O’Donnell P (2015) Prefrontal cortical kappa opioid receptors attenuate responses to amygdala inputs. Neuropsychopharmacology 40:2856–2864. https://doi.org/10.1038/npp.2015.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11:823–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torrisi SA, Leggio GM, Drago F, Salomone S (2019) Therapeutic challenges of post-traumatic stress disorder: focus on the dopaminergic system. Front Pharmacol 10:404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukahara-Ohsumi Y, Tsuji F, Niwa M, Hata T, Narita M, Suzuki T, Sasano M, Aono H (2011) The kappa opioid receptor agonist SA14867 has antinociceptive and weak sedative effects in models of acute and chronic pain. Eur J Pharmacol 671:53–60

    CAS  PubMed  Google Scholar 

  • Vaerøy H, Nyberg F, Terenius L (1991) No evidence for endorphin deficiency in fibromyalgia following investigation of cerebrospinal fluid (CSF) dynorphin A and Met-enkephalin-Arg6-Phe7. Pain 46:139–143

    PubMed  Google Scholar 

  • Valdez GR, Platt DM, Rowlett JK, Rüedi-Bettschen D, Spealman RD (2007) Kappa agonist-induced reinstatement of cocaine seeking in squirrel monkeys: a role for opioid and stress-related mechanisms. J Pharmacol Exp Ther 323:525–533

    CAS  PubMed  Google Scholar 

  • Van’t Veer A, Carlezon WAJ (2013) Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology (Berl) 229:435–452

    Google Scholar 

  • Vanderah TW, Laughlin T, Lashbrook JM, Nichols ML, Wilcox GL, Ossipov MH, Malan TPJ, Porreca F (1996) Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats: blockade by MK-801 but not naloxone. Pain 68:275–281

    CAS  PubMed  Google Scholar 

  • Vijay A, Wang S, Worhunsky P, Zheng M-Q, Nabulsi N, Ropchan J, Krishnan-Sarin S, Huang Y, Morris ED (2016) PET imaging reveals sex differences in kappa opioid receptor availability in humans, in vivo. Am J Nucl Med Mol Imaging 6:205–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vollstädt-Klein S, Bumb JM, Otto A, Dinter C, Karl D, Koopmann A, Hermann D, Mann K, Kiefer F (2019) The effects of nalmefene on emotion processing in alcohol use disorder – a randomized, controlled fMRI study. Eur Neuropsychopharmacol 29:1442–1452

    PubMed  Google Scholar 

  • Vowles KE, McEntee ML, Julnes PS, Frohe T, Ney JP, van der Goes DN (2015) Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis. Pain 156:569–576

    PubMed  Google Scholar 

  • Wadenberg M-LG (2003) A review of the properties of spiradoline: a potent and selective kappa-opioid receptor agonist. CNS Drug Rev 9:187–198. http://www.ncbi.nlm.nih.gov/pubmed/12847558. Accessed 1 Oct 2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gardell LR, Ossipov MH, Vanderah TW, Brennan MB, Hochgeschwender U, Hruby VJ, Malan TP, Lai J, Porreca F (2001) Pronociceptive actions of dynorphin maintain chronic neuropathic pain. J Neurosci 21:1779–1786. http://www.ncbi.nlm.nih.gov/pubmed/11222667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S-C, Tsou H-H, Chung R-H, Chang Y-S, Fang C-P, Chen C-H, Ho I-K, Kuo H-W, Liu SC, Shih Y-H, Wu H-Y, Huang B-H, Lin K-M, Chen ACH, Hsiao C-F, Liu Y-L (2014) The association of genetic polymorphisms in the κ-opioid receptor 1 gene with body weight, alcohol use, and withdrawal symptoms in patients with methadone maintenance. J Clin Psychopharmacol 34:205–211

    CAS  PubMed  Google Scholar 

  • Wee S, Koob GF (2010) The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 210:121–135. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2879894&tool=pmcentrez&rendertype=abstract. Accessed 16 Sept 2014

    CAS  Google Scholar 

  • Worley MJ, Heinzerling KG, Shoptaw S, Ling W (2015) Pain volatility and prescription opioid addiction treatment outcomes in patients with chronic pain. Exp Clin Psychopharmacol 23:428–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worley MJ, Heinzerling KG, Shoptaw S, Ling W (2017) Volatility and change in chronic pain severity predict outcomes of treatment for prescription opioid addiction. Addiction 112:1202–1209

    PubMed  PubMed Central  Google Scholar 

  • Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang X-P, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F-X, Babazada H, Gao H, Huang X-P, Xi C-H, Chen C-H, Xi J, Yu W-F, Liu R (2019) Dezocine alleviates morphine-induced dependence in rats. Anesth Analg 128:1328–1335

    CAS  PubMed  Google Scholar 

  • Xie JY, De Felice M, Kopruszinski CM, Eyde N, LaVigne J, Remeniuk B, Hernandez P, Yue X, Goshima N, Ossipov M, King T, Streicher JM, Navratilova E, Dodick D, Rosen H, Roberts E, Porreca F (2017) Kappa opioid receptor antagonists: a possible new class of therapeutics for migraine prevention. Cephalalgia 37:780–794

    PubMed  PubMed Central  Google Scholar 

  • Xu M, Petraschka M, McLaughlin JP, Westenbroek RE, Caron MG, Lefkowitz RJ, Czyzyk TA, Pintar JE, Terman GW, Chavkin C (2004) Neuropathic pain activates the endogenous kappa opioid system in mouse spinal cord and induces opioid receptor tolerance. J Neurosci 24:4576–4584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Bruchas MR, Ippolito DL, Gendron L, Chavkin C (2007) Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase. J Neurosci 27:2570–2581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yalcin I, Bohren Y, Waltisperger E, Sage-Ciocca D, Yin JC, Freund-Mercier M-J, Barrot M (2011) A time-dependent history of mood disorders in a murine model of neuropathic pain. Biol Psychiatry 70:946–953

    PubMed  Google Scholar 

  • Yuanyuan J, Rui S, Hua T, Jingjing C, Cuola D, Yuhui S, Shuguang W (2018) Genetic association analyses and meta-analysis of Dynorphin-Kappa Opioid system potential functional variants with heroin dependence. Neurosci Lett 685:75–82

    CAS  PubMed  Google Scholar 

  • Yuferov V, Fussell D, LaForge KS, Nielsen DA, Gordon D, Ho A, Leal SM, Ott J, Kreek MJ (2004) Redefinition of the human kappa opioid receptor gene (OPRK1) structure and association of haplotypes with opiate addiction. Pharmacogenetics 14:793–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamarripa CA, Naylor JE, Huskinson SL, Townsend EA, Prisinzano TE, Freeman KB (2020a) Kappa opioid agonists reduce oxycodone self-administration in male rhesus monkeys. Psychopharmacology (Berl) 237:1471–1480

    CAS  Google Scholar 

  • Zamarripa CA, Patel TR, Williams BC, Pareek T, Schrock HM, Prisinzano TE, Freeman KB (2020b) The kappa-opioid receptor agonist, nalfurafine, blocks acquisition of oxycodone self-administration and oxycodone’s conditioned rewarding effects in male rats. Behav Pharmacol 31(8):792–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarrindast M-R, Khakpai F (2015) The modulatory role of dopamine in anxiety-like behavior. Arch Iran Med 18:591–603

    PubMed  Google Scholar 

  • Zhang Y, Meng X, Li A, Xin J, Berman BM, Lao L, Tan M, Ren K, Zhang R-X (2012) Electroacupuncture alleviates affective pain in an inflammatory pain rat model. Eur J Pain 16:170–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Leri F, Grella SL, Aldrich JV, Kreek MJ (2013) Involvement of dynorphin and kappa opioid receptor in yohimbine-induced reinstatement of heroin seeking in rats. Synapse 67:358–361

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding: The Shirley Hatos Foundation supports CMC, CJE, and LL. NIH Grant numbers R01DA041781 (CMC), 1UG3TR003148-01 (CMC), and 2P50 DA005010 (CMC, CJE), and the Department of Defense Grant number W81XWH-15-1-0435 (CMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Cahill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cahill, C.M., Lueptow, L., Kim, H., Shusharla, R., Bishop, A., Evans, C.J. (2021). Kappa Opioid Signaling at the Crossroads of Chronic Pain and Opioid Addiction. In: Liu-Chen, LY., Inan, S. (eds) The Kappa Opioid Receptor. Handbook of Experimental Pharmacology, vol 271. Springer, Cham. https://doi.org/10.1007/164_2021_434

Download citation

Publish with us

Policies and ethics