Skip to main content

Advertisement

Log in

Culture independent bacterial diversity of Changme Khang and Changme Khangpu glaciers of North Sikkim, India

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Microbial communities at cryosphere are the cosmopolitan buffers of important biogeochemical processes stationed at extreme archaic and frigid conditions. In the present study microbial diversity analysis from accumulation zone of two glaciers of North Sikkim, India has been carried by two culture independent methods. The phospholipid fatty acids analysis of Changme Khang and Changme Khangpu glacier showed that both of these were dominated by Gram-positive bacteria followed by Gram-negative bacteria. Among the two glaciers, Changme Khang (54.04%) had higher percentage of Gram-positive bacteria than Changme Khangpu (24.84%), while Gram-negative bacteria were higher in Changme Khangpu (22.65%) than Changme Khang (4.41%). The metagenomic analysis shows the dominance of Proteobacteria followed by Firmicutes and Actinobacteria. Betaproteobacteria were the dominant class among Proteobacteria. Similar kind of bacterial diversity was also observed from other polar and non-polar glaciers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(2):403–410

    Article  CAS  Google Scholar 

  • Auman AJ, Breezee JL, Gosink JJ, Kampfer P, Staley JT (2006) Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007

    Article  CAS  Google Scholar 

  • Bahuguna IM, Kulkarni AV, Arrawatia ML et al. (2001) Glacier Atlas of Tista Basin (Sikkim Himalaya), SAC/RESA/MWRG-GLI/SN/16/2001

  • Bajracharya SR, Shrestha B (2011) The status of glaciers in the Hindu Kush-Himalayan region. ICIMOD, Kathmandu

    Google Scholar 

  • Bajracharya SR, Mool PK, Shrestha BR (2007) Impact of climate change on Himalayan Glaciers and glacial Lakes: case studies on GLOFs and associated hazards in Nepal and Bhutan. ICIMOD, Kathmandu

    Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2008) Changing streamflow patterns in the rivers of northwestern Himalaya: implications of global warming in the 20th century. Curr Sci 95(5):618–626

    Google Scholar 

  • Byers A (2012) Committee on Himalayan Glaciers, hydrology, climate change, and implications for water security. The National Academies Press, Washington, pp 78–103

    Google Scholar 

  • Cameron KA, Hodson AJ, Osborn AM (2012) Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbial Ecol 82:254–267

    Article  CAS  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253-161

    Article  CAS  Google Scholar 

  • Cheng SM, Foght JM (2007) Cultivation-independent and dependent characterization of bacteria resident beneath John Evans Glacier. FEMS Microbial Ecol 59:318–330

    Article  CAS  Google Scholar 

  • Choudhari S (2015) Insights into glacial metagenome and sequence biases in comparative metagenomics. Rutgers, The State University of New Jersey. PhD Thesis

  • Choudhari S, Lohia R, Grigoriev A (2014) Comparative metagenome analysis of an Alaskan glacier. J Bioinf Comput Biol 12(2):1441003

    Article  CAS  Google Scholar 

  • Committee on Himalayan glacier and hydrology (CHGH) Report (2012) Himalayan glaciers: climate change, water resources, and water security. The National Academies Press, Washington, DC

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  Google Scholar 

  • Edwards A (2015) Coming in from the cold: potential microbial threats from the terrestrial cryosphere. Front Earth Sci 3:12. https://doi.org/10.3389/feart.2015.00012

    Article  Google Scholar 

  • Edwards A, Pachebat JA, Swain M, Hegarty M, Hodson AJ, Irvine-Fynn TDL, Rasser SME, Sattler B (2013) A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environ Res Lett 8:035003

    Article  Google Scholar 

  • Ewa P, Bosnak CP (2012) The Analysis of Drinking Waters by U.S. EPA Method 200.8 Using the NexION 300D/350D ICP-MS in Standard, Collision and Reaction Modes. PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA, 1–9

  • Fan F, Zhang B, Morrill PL (2017) Phospholipid fatty acid (PLFA) analysis for profiling microbial communities in offshore produced water. Mar Pollut Bull 122(1–2):194–206

    Article  CAS  Google Scholar 

  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340

    Article  CAS  Google Scholar 

  • Franzetti A, Navarra F, Tagliaferri I, Gandolfi I, Bestetti G, Minora U, Azzoni RS, Diolaiuti G, Smiraglia C, Ambrosini R (2017) Potential sources of bacteria colonizing the cryoconite of an alpine glacier. PLoS One 12(3):e0174786

    Article  CAS  Google Scholar 

  • Garcia-Lopez E, Cid C (2017) Glaciers and ice sheets as analog environments of potentially habitable icy worlds. Front Microbiol 8:1407

    Article  Google Scholar 

  • Griffiths GW (2012) Do we need a global strategy for microbial conservation? Trends Ecol Evol 27(1):1–2

    Article  Google Scholar 

  • Grzesiak J, Zdanowski MK, Górniak D, Swiatecki A, Piekarczyk TA, Szatraj K, Kurowska JS, Nieckarz M (2015) Microbial community changes along the ecology glacier ablation zone (King George Island, Antarctica). Polar Biol 38(12):2069–2083

    Article  Google Scholar 

  • Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinf Oxford Engl 29(2):1072–1075

    Article  CAS  Google Scholar 

  • Hagen SB, Ims RA, Yoccoz NG (2003) Density dependent melanism in sub-arctic populations of winter moth larvae (Operophtera brumata). Ecol Entomol 28:659–665

    Article  Google Scholar 

  • Hell K, Edwards A, Zarsky J, Podmirseg SM, Girdwood S, Pachebat JA, Insam H, Sattler B (2013) The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME J 7:1814–1826

    Article  CAS  Google Scholar 

  • Himanshu Swarnkar MK, Singh D, Kumar R (2016) First complete genome sequence of a species in the genus Microterricola, an extremophilic cold active enzyme producing bacterial strain ERGS5:02 isolated from Sikkim Himalaya. J Biotechnol 222:17–18

    Article  CAS  Google Scholar 

  • Huston AL, Krieger-Brockett BB, Deming JW (2000) Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2:383–388

    Article  CAS  Google Scholar 

  • Jianchu X, Eriksson M, Vaidya R, Shrestha A, Hewitt K (2007) The melting Himalayas: regional challenges and local impacts of climate change on mountain ecosystem and livelihoods. ICIMOD Technical paper, Kathmandu, pp 1–14

    Google Scholar 

  • Junge K, Christner B, Staley J (2011) Diversity of psychrophilic bacteria from sea ice and glacial ice communities. Extrem Handbook 11(2):793–815 (Springer)

    Article  Google Scholar 

  • Kayani MR, Doyle SM, Sangwan N, Wang G, Gilbert JA, Christner BC, Zhu TF (2018) Metagenomic analysis of basal ice from an Alaskan glacier. Microbiome Announc 6(1):123. https://doi.org/10.1186/s40168-018-0505-5

    Article  Google Scholar 

  • Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S (2015a) Genome assembly of Chryseobacterium polytrichastri ERMR1:04, a psychrotolerant bacterium with cold active proteases, isolated from east Rathong glacier in India. Genome Announc 3(6):e01305–e01315

    Google Scholar 

  • Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S (2015b) Complete genome sequence of Arthrobacter sp. ERGS1:01, a putative novel bacterium with prospective cold active industrial enzymes, isolated from east Rathong glacier in India. J Biotechnol 214:139–140

    Article  CAS  Google Scholar 

  • Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S (2016) Complete genome sequence of Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya. J Biotechnol 220:86–87

    Article  CAS  Google Scholar 

  • Lanekoff I, Karlsson R (2010) Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS. Anal Bioanal Chem 397(8):3543–3551

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie2. Nat Methods 9(2):357–359

    Article  CAS  Google Scholar 

  • Liu J, Zhang Z, Liu Z, Zhu H, Dang H, Lu J, Cui Z (2011) Production of cold adapted amylase by marine bacterium Wangia sp. C52: optimization, modeling, and partial characterization. Mar Biotechnol 13(5):837–844

    Article  CAS  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals-fundamental and applied aspects. Naturwissenschaften 94(2):77–99

    Article  CAS  Google Scholar 

  • Mc Cammon SA, Bowman JP (2000) Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of (Flavobacterium) salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evolut Microbiol 3(3):1055–1063

    Article  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70(1):202–213

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  Google Scholar 

  • Mosier AC, Murray AE, Fritsen C (2007) Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol Ecol 59(2):274–288

    Article  CAS  Google Scholar 

  • Munoz PA, Marquez SL, Nilo FDG, Miranda VM, Blamey JM (2017) Structure and application of antifreeze proteins from Antarctic bacteria. Microb Cell Fact 16:1–13

    Article  CAS  Google Scholar 

  • Najar IN, Sherpa MT, Das S, Das S, Thakur N (2018) Microbial ecology of two hot springs of Sikkim: predominate population and geochemistry. Sci Total Environ 637–638:730–745

    Article  CAS  Google Scholar 

  • Nowak A, Hodson A (2014) Changes in meltwater chemistry over a 20-year period following a termal regime switch from polythermal to cold-based glaciation at Austre Broggerbreen, Svalbard. Polar Res 33:22779

    Article  CAS  Google Scholar 

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27(5):824–834

    Article  CAS  Google Scholar 

  • Piper AM (1944) A graphical procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25:914–923

    Article  Google Scholar 

  • Powl AM, East JM, Lee AG (2007) Different effects of lipid chain length on the two sides of a membrane and the lipid annulus of MscL. Biophys J 93:113–122

    Article  CAS  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 130–145. https://doi.org/10.1128/9781555817770.ch13

    Chapter  Google Scholar 

  • Quideau SA, McIntosh ACS, Norris CE, Lloret E, Swallow MJB, Hannam K (2016) Extraction and analysis of microbial phospholipid fatty acids in soils. J Vis Exp 114:e54360

    Google Scholar 

  • Ramana KV, Singh L, Dhaked RK (2002) Biotechnological application of psychrophiles and their habitat to low temperature. J Sci Ind Res 59(2):87–101

    Google Scholar 

  • Rogers SO, Starmer WT, Castello JD (2004) Recycling of pathogenic microbes through survival in ice. Med Hypotheses 63:773–777

    Article  Google Scholar 

  • Rondon J, Gomez W, Ball MM (2016) Diversity of culturable bacteria recovered from Pico Bolívar’s glacial and subglacial environments, at 4,950 m, in Venezuelan tropical andes. Can J Microbiol 62(11):1–14

    Article  CAS  Google Scholar 

  • Schutte U, Abdo Z, Foster J, Ravel J, Bunge J, Solheim B, Forney LJ (2010) Bacterial diversity in a glacier foreland of the high Arctic. Mol Ecol 19(1):55–66

    Google Scholar 

  • Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71(1):123–130

    Article  CAS  Google Scholar 

  • Segawa T, Ushida K, Narita H, Kanda H, Kohshima S (2010) Bacterial communities in two Antarctic ice cores analyzed by 16S rRNA gene sequencing analysis. Polar Sci 4:215–227

    Article  Google Scholar 

  • Shen L, Yao T, Xu B, Wang H, Jiao N, Kang S, Liu X, Liu Y (2012) Variation of culturable bacteria along depth in the East Rongbuk ice core, Mt. Everest. Geosci Front 3:327–334

    Article  CAS  Google Scholar 

  • Sherpa MT, Najar IN, Das S, Thakur N (2018a) Bacterial diversity in an alpine debris-free and debris-cover accumulation zone Glacier Ice, North Sikkim, India. Indian J Microbiol 58(4):470–478

    Article  Google Scholar 

  • Sherpa MT, Najar IN, Das S, Thakur N (2018b) Diversity of bacillus species from chumbu glacier. Res J Life Sci, Bioinf, Pharm Chem Sci 4(3):164–174

    CAS  Google Scholar 

  • Sherpa MT, Najar IN, Das S, Thakur N (2019) The diversity of Pseudomonas species from the accumulation Zone of Kanchengayao Glacier, North Sikkim, India. J Pure Appl Microbiol 13(1):339–348

    Article  Google Scholar 

  • Shivaji S, Pratibha MS, Sailaja B, Hara Kishore K, Singh AK, Begum Z, Anarasi U, Prabagaran SR, Reddy GS, Srinivas TN (2011) Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15(1):1–22

    Article  CAS  Google Scholar 

  • Singh P, Bengtsson L (2004) Hydrological sensitivity of a large Himalayan basin to climate change. Hydrol Process 18(13):2363–2385

    Article  Google Scholar 

  • Singh P, Hanada Y, Singh SM, Tsuda S (2014) Antifreeze protein activity in Arctic cryoconite bacteria. FEMS Microbiol Lett 351(1):14–22

    Article  CAS  Google Scholar 

  • Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12(2):902–903

    Article  CAS  Google Scholar 

  • Turchetti B, Buzzini JP, Goretti M, Branda E, Diolaiuti G, Agata CD, Smiraglia C, Martini AV (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbial Ecol 63(1):73–83

    Article  CAS  Google Scholar 

  • Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K (2010) A novel cold-adapted cellulase complex from Eisenia foetida: characterization of a multienzyme complex with carboxymethyl cellulase, beta-glucosidase, beta-1,3 glucanase, and beta-xylosidase. Comp Biochem Physiol Part B: Biochem Mol Biol 157(1):26–32

    Article  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19(3):141–147

    Article  Google Scholar 

  • Wu X, Zhang W, Liu G, Yang X, Hu P, Chen T, Zhang G, Li Z (2012) Bacterial diversity in the foreland of the Tianshan No. 1 glacier, China. Environ Res Lett 7:014038

    Article  Google Scholar 

  • Yao T, Xiang S, Zhang X, Wang N, Wang Y (2006) Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Global Biogeochem Cycles 20:GB1004. https://doi.org/10.1029/2004gb002424

    Article  Google Scholar 

  • Yoon JH, Kang SS, Lee KC, Lee ES, Kho YH, Kang KH, Park YH (2001) Planomicrobium koreense gen. nov., sp. nov., a bacterium isolated from the Korean traditional fermented seafood jeotgal, and transfer of Planococcus okeanokoites (Nakagawa et al. 1996) and Planococcus mcmeekinii (Junge et al. 1998) to the genus Planomicrobium. Int J Syst Evolut Microbiol 51:1511–1520

    Article  CAS  Google Scholar 

  • Zdanowski MK, Bogdanowicz A, Gawor J, Gromadka R, Wolicka D, Grzesiak J (2017) Enrichment of cryoconite hole anaerobes: implications for the subglacial microbiome. Microb Ecol 73:532–538

    Article  CAS  Google Scholar 

  • Zhang S, Hou S, Ma X, Qin D, Chen T (2007) Culturable bacteria in Himalayan glacial ice in response to atmospheric circulation. Biogeoscience 4:1–9

    Article  Google Scholar 

  • Zhang SH, Hou SG, Yang GL, Wang JH (2010) Bacterial community in the East Rongbuk Glacier, Mt. Qomolangma (Everest) by culture and culture-independent methods. Microbiol Res 165(4):336–345

    Article  CAS  Google Scholar 

  • Zhang S, Hou S, Qin X, Du W (2015) Preliminary study on effects of glacial retreat on the dominant glacial snow bacteria in Laohugou glacier No. 12. Geomicrobiology 32(2):113–118

    Article  CAS  Google Scholar 

  • Zhang B, Wu X, Zhang G, Li S, Zhang W, Chen X, Sun L, Zhang B, Liu G, Chen T (2016) The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale. Environ Res Lett 11(11):054012

    Article  Google Scholar 

Download references

Acnowledgement

This study has been funded by the Department of Science and Technology, Govt. of India (IUCCC) and Department of Biotechnology (BT/20/NE/2011). We are grateful to Forest Department, Govt. of Sikkim for providing research permit and access to the sampling sites. Authors are thankful to Dr. Uttam Lal, Dr. Rakesh Ranjan and Dr. Smriti Basnet for their support during the field study. The authors would like to thank Department of Microbiology for all the laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

MTS performed sample collection, did the field study, experimental works, analysis and prepared the manuscript, NT designed the study, reviewed and edited manuscript, INN and SD helped in some experimental work.

Corresponding author

Correspondence to Nagendra Thakur.

Ethics declarations

Conflict of interest

Authors have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherpa, M.T., Najar, I.N., Das, S. et al. Culture independent bacterial diversity of Changme Khang and Changme Khangpu glaciers of North Sikkim, India. Environmental Sustainability 2, 241–253 (2019). https://doi.org/10.1007/s42398-019-00067-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00067-z

Keywords

Navigation