Skip to main content

Advertisement

Log in

Boosting Microbial Electrocatalytic Kinetics for High Power Density: Insights into Synthetic Biology and Advanced Nanoscience

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Microbial electrochemical systems are able to harvest electricity or synthesize valuable chemicals from organic matters while simultaneously cleaning environmentally hazardous wastes. The sluggish extracellular electron transfer (EET) between “non- or poor-conductive” microbes and electrode involves both bio- and electrocatalytic processes but is one of the main impediments to fast microbial electrode kinetics. To boost EET, researches have been focused on engineering electrochemically active microbes, constructing a unique nanostructured electrode endowed with a large amount loading of microbes and enhancing biotic–abiotic interactions for rapid electrode kinetics. After surveys of fundamentals of microbial electrocatalysis, particularly the diverse EET mechanisms with discussions on scientific insights, this review summarizes and discusses the recent advances in bioengineering highly active biocatalytic microbes and nanoengineering unique electrode nanostructures for significantly improved microbial EET processes. In particular, this review associated with our researches analyzes in more detail the EET pathways, which contain direct and mediated electron transfer. The confusion between the energy efficiency and electron transfer rate is clarified and the approaches to elevate the EET rate are further discussed. These discussions shed both theoretical and practical lights on further research and development of more high-performance microbial catalysts by using synthetic biology coupled with nanoengineering approach for high energy conversion efficiency while achieving high power density for practical applications. The challenges and perspectives are presented. It is believed that a next wave of research of microbial electrochemical systems will produce a new generation of sustainable green energy technologies and demonstrate great promise in their broad applications and industrializations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Logan, B.E., Rabaey, K.: Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337, 686–690 (2012)

    CAS  PubMed  Google Scholar 

  2. Schroder, U., Harnisch, F., Angenent, L.T.: Microbial electrochemistry and technology: terminology and classification. Energy Environ. Sci. 8, 513–519 (2015)

    Google Scholar 

  3. Sun, M., Zhai, L.F., Li, W.W., et al.: Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chem. Soc. Rev. 45, 2847–2870 (2016)

    CAS  PubMed  Google Scholar 

  4. Santoro, C., Arbizzani, C., Erable, B., et al.: Microbial fuel cells: from fundamentals to applications. A review. J. Power. Sources 356, 225–244 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Qiao, Y., Bao, S.J., Li, C.M.: Electrocatalysis in microbial fuel cells-from electrode material to direct electrochemistry. Energy Environ. Sci. 3, 544–553 (2010)

    CAS  Google Scholar 

  6. Logan, B.E.: Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7, 375–381 (2009)

    CAS  PubMed  Google Scholar 

  7. Pandey, P., Shinde, V.N., Deopurkar, R.L., et al.: Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energ. 168, 706–723 (2016)

    CAS  Google Scholar 

  8. Logan, B.E.: Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85, 1665–1671 (2010)

    CAS  PubMed  Google Scholar 

  9. Dong, Y., Qu, Y., He, W., et al.: A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour. Technol. 195, 66–72 (2015)

    CAS  PubMed  Google Scholar 

  10. Ieropoulos, I.A., Greenman, J., Melhuish, C., et al.: Microbial fuel cells for robotics: energy autonomy through artificial symbiosis. Chemsuschem 5, 1020–1026 (2012)

    CAS  PubMed  Google Scholar 

  11. Dewan, A., Ay, S.U., Karim, M.N., et al.: Alternative power sources for remote sensors: a review. J. Power Sources 245, 129–143 (2014)

    CAS  Google Scholar 

  12. Nitisoravut, R., Thanh, C.N.D., Regmi, R.: Microbial fuel cells: advances in electrode modifications for improvement of system performance. Int. J. Green Energy 14, 712–723 (2017)

    Google Scholar 

  13. Kumar, G., Bakonyi, P., Zhen, G., et al.: Microbial electrochemical systems for sustainable biohydrogen production: surveying the experiences from a start-up viewpoint. Renew. Sustain. Energy Rev. 70, 589–597 (2017)

    CAS  Google Scholar 

  14. Jafary, T., Daud, W.R.W., Ghasemi, M., et al.: Biocathode in microbial electrolysis cell; present status and future prospects. Renew. Sustain. Energy Rev. 47, 23–33 (2015)

    CAS  Google Scholar 

  15. Rabaey, K., Rozendal, R.A.: Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010)

    CAS  PubMed  Google Scholar 

  16. Sadhukhan, J., Lloyd, J.R., Scott, K., et al.: A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. Renew. Sustain. Energy Rev. 56, 116–132 (2016)

    CAS  Google Scholar 

  17. Nevin, K.P., Woodard, T.L., Franks, A.E., et al.: Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1, 00103–00110 (2010)

    Google Scholar 

  18. Nevin, K.P., Hensley, S.A., Franks, A.E., et al.: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77, 2882–2886 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Albo, J., Alvarez-Guerra, M., Castano, P., et al.: Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem. 17, 2304–2324 (2015)

    CAS  Google Scholar 

  20. Liu, C., Colón, B.C., Ziesack, M., et al.: Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016)

    CAS  PubMed  Google Scholar 

  21. Jensen, H.M., Albers, A.E., Malley, K.R., et al.: Engineering of a synthetic electron conduit in living cells. Proc. Natl. Acad. Sci. USA 107, 19213–19218 (2010)

    CAS  PubMed  Google Scholar 

  22. Goldbeck, C.P., Jensen, H.M., TerAvest, M.A., et al.: Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth. Biol. 2, 150–159 (2013)

    CAS  PubMed  Google Scholar 

  23. TerAvest, M.A., Zajdel, T.J., Ajo-Franklin, C.M.: The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli. ChemElectroChem 1, 1874–1879 (2014)

    CAS  Google Scholar 

  24. Yang, Y., Ding, Y., Hu, Y., et al.: Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 4, 815–823 (2015)

    CAS  PubMed  Google Scholar 

  25. Tao, L., Xie, M., Chiew, G.G.Y., et al.: Improving electron trans-inner membrane movements in microbial electrocatalysts. Chem. Commun. 52, 6292–6295 (2016)

    CAS  Google Scholar 

  26. Han, S., Gao, X.Y., Ying, H.J., et al.: NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells. Green Chem. 18, 2473–2478 (2016)

    CAS  Google Scholar 

  27. TerAvest, M.A., Ajo-Franklin, C.M.: Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol. Bioeng. 113, 687–697 (2015)

    PubMed  Google Scholar 

  28. Zou, L., Qiao, Y., Wu, Z.Y., et al.: Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells. Adv. Energy Mater. 6, 1501535 (2016)

    Google Scholar 

  29. Qiao, Y., Wu, X.S., Li, C.M.: Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells. J. Power Sources 266, 226–231 (2014)

    CAS  Google Scholar 

  30. Qiao, Y., Wu, X.S., Ma, C.X., et al.: A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells. RSC Adv. 4, 21788–21793 (2014)

    CAS  Google Scholar 

  31. Yang, Y., Liu, T., Zhu, X., et al.: Boosting power density of microbial fuel cells with 3D nitrogen-doped graphene aerogel electrode. Adv. Sci. 3, 1600097 (2016)

    Google Scholar 

  32. You, S., Ma, M., Wang, W., et al.: 3D macroporous nitrogen-enriched graphitic carbon scaffold for efficient bioelectricity generation in microbial fuel cells. Adv. Energy Mater. 7, 1601364 (2016)

    Google Scholar 

  33. Zhao, S., Li, Y., Yin, H., et al.: Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv. 1, e1500372 (2015)

    PubMed  PubMed Central  Google Scholar 

  34. Coursolle, D., Gralnick, J.A.: Reconstruction of extracellular respiratory pathways for iron(III) reduction in Shewanella oneidensis strain MR-1. Front. Microbiol. 3, 56 (2012)

    PubMed  PubMed Central  Google Scholar 

  35. Jensen, H.M., TerAvest, M.A., Kokish, M.G., et al.: CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth. Biol. 5, 679–688 (2016)

    CAS  PubMed  Google Scholar 

  36. Liu, J., Yong, Y.C., Song, H., et al.: Activation enhancement of citric acid cycle to promote bioelectrocatalytic activity of arcA knockout Escherichia coli toward high-performance microbial fuel cell. ACS Catal. 2, 1749–1752 (2012)

    CAS  Google Scholar 

  37. Xiang, K., Qiao, Y., Ching, C.B., et al.: GldA overexpressing-engineered E. coli as superior electrocatalyst for microbial fuel cells. Electrochem. Commun. 45, 1593–1595 (2009)

    Google Scholar 

  38. Webster, D.P., TerAvest, M.A., Doud, D.F.R., et al.: An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens. Bioelectron. 62, 320–324 (2014)

    CAS  PubMed  Google Scholar 

  39. Wang, H., Luo, H., Fallgren, P.H., et al.: Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol. Adv. 33, 317–334 (2015)

    PubMed  Google Scholar 

  40. Khan, M.D., Khan, N., Sultana, S., et al.: Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochem. 57, 141–158 (2017)

    CAS  Google Scholar 

  41. Liu, X.W., Li, W.W., Yu, H.Q.: Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem. Soc. Rev. 43, 7718–7745 (2014)

    CAS  PubMed  Google Scholar 

  42. Xie, X., Criddle, C., Cui, Y.: Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ. Sci. 8, 3418–3441 (2015)

    CAS  Google Scholar 

  43. Li, S., Cheng, C., Thomas, A.: Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts. Adv. Mater. 29, 1602547 (2017)

    Google Scholar 

  44. Kumar, R., Singh, L., Zularisam, A.: Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sustain. Energy Rev. 56, 1322–1336 (2016)

    CAS  Google Scholar 

  45. Sydow, A., Krieg, T., Mayer, F., et al.: Electroactive bacteria–molecular mechanisms and genetic tools. Appl. Microbiol. Biotechnol. 98, 8481–8495 (2014)

    CAS  PubMed  Google Scholar 

  46. Kumar, R., Singh, L., Wahid, Z.A., et al.: Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. Int. J. Energy Res. 39, 1048–1067 (2015)

    CAS  Google Scholar 

  47. Potter, M.C.: Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. B 84, 260–276 (1911)

    Google Scholar 

  48. Shi, L., Dong, H.L., Reguera, G., et al.: Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016)

    CAS  PubMed  Google Scholar 

  49. Kumar, A., Hsu, L.H.H., Kavanagh, P., et al.: The ins and outs of microorganism-electrode electron transfer reactions. Nat. Rev. Chem. 1, 0024 (2017)

    CAS  Google Scholar 

  50. Nevin, K.P., Kim, B.C., Glaven, R.H., et al.: Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4, e5628 (2009)

    PubMed  PubMed Central  Google Scholar 

  51. Richter, H., Nevin, K.P., Jia, H., et al.: Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ. Sci. 2, 506–516 (2009)

    CAS  Google Scholar 

  52. Okamoto, A., Nakamura, R., Hashimoto, K.: In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes. Electrochim. Acta 56, 5526–5531 (2011)

    CAS  Google Scholar 

  53. Breuer, M., Rosso, K.M., Blumberger, J., et al.: Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J. R. Soc. Interface 12, 20141117 (2015)

    PubMed  PubMed Central  Google Scholar 

  54. Bretschger, O., Obraztsova, A., Sturm, C.A., et al.: Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73, 7003–7012 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Leys, D., Scrutton, N.S.: Electrical circuitry in biology: emerging principles from protein structure. Curr. Opin. Struct. Biol. 14, 642–647 (2004)

    CAS  PubMed  Google Scholar 

  56. Reguera, G., McCarthy, K.D., Mehta, T., et al.: Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005)

    CAS  PubMed  Google Scholar 

  57. El-Naggar, M.Y., Wanger, G., Leung, K.M., et al.: Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 107, 18127–18131 (2010)

    CAS  PubMed  Google Scholar 

  58. Strycharz-Glaven, S.M., Snider, R.M., Guiseppi-Elie, A., et al.: On the electrical conductivity of microbial nanowires and biofilms. Energy Environ. Sci. 4, 4366–4379 (2011)

    CAS  Google Scholar 

  59. Pirbadian, S., Barchinger, S.E., Leung, K.M., et al.: Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 111, 12883–12888 (2014)

    CAS  PubMed  Google Scholar 

  60. Brutinel, E.D., Gralnick, J.A.: Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl. Microbiol. Biotechnol. 93, 41–48 (2012)

    PubMed  Google Scholar 

  61. Yang, Y., Xu, M., Guo, J., et al.: Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem. 47, 1707–1714 (2012)

    CAS  Google Scholar 

  62. Rabaey, K., Boon, N., Höfte, M., et al.: Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401–3408 (2005)

    CAS  PubMed  Google Scholar 

  63. Boon, N., De Maeyer, K., Höfte, M., et al.: Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl. Microbiol. Biotechnol. 80, 985–993 (2008)

    PubMed  Google Scholar 

  64. Wang, Y., Kern, S.E., Newman, D.K.: Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J. Bacteriol. 192, 365–369 (2010)

    CAS  PubMed  Google Scholar 

  65. Lies, D.P., Hernandez, M.E., Kappler, A., et al.: Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71, 4414–4426 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Marsili, E., Baron, D.B., Shikhare, I.D., et al.: Shewanella Secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 105, 3968–3973 (2008)

    CAS  PubMed  Google Scholar 

  67. von Canstein, H., Ogawa, J., Shimizu, S., et al.: Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008)

    Google Scholar 

  68. Kotloski, N.J., Gralnick, J.A.: Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4, e00553 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Coursolle, D., Baron, D.B., Bond, D.R., et al.: The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 192, 467–474 (2010)

    CAS  PubMed  Google Scholar 

  70. Jiang, X., Hu, J., Fitzgerald, L.A., et al.: Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc. Natl. Acad. Sci. USA 107, 16806–16810 (2010)

    CAS  PubMed  Google Scholar 

  71. Okamoto, A., Hashimoto, K., Nealson, K.H., et al.: Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc. Natl. Acad. Sci. USA 110, 7856–7861 (2013)

    CAS  PubMed  Google Scholar 

  72. Okamoto, A., Hashimoto, K., Nealson, K.H.: Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer. Angew. Chem. Int. Ed. 53, 10988–10991 (2014)

    CAS  Google Scholar 

  73. Xu, S., Jangir, Y., El-Naggar, M.Y.: Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1. Electrochim. Acta 198, 49–55 (2016)

    CAS  Google Scholar 

  74. Okamoto, A., Nakamura, R., Nealson, K.H., et al.: Bound flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter. ChemElectroChem 1, 1808–1812 (2014)

    CAS  Google Scholar 

  75. Maithreepala, R.A., Doong, R.A.: Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles. J. Hazard. Mater. 164, 337–344 (2009)

    CAS  PubMed  Google Scholar 

  76. Okamoto, A., Saito, K., Inoue, K., et al.: Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species. Energy Environ. Sci. 7, 1357–1361 (2014)

    CAS  Google Scholar 

  77. Boon, N., Aelterman, P., Clauwaert, P., et al.: Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol. 77, 1119–1129 (2008)

    PubMed  Google Scholar 

  78. Fuller, S.J., McMillan, D.G., Renz, M.B., et al.: Extracellular electron transport-mediated Fe(III) reduction by a community of alkaliphilic bacteria that use flavins as electron shuttles. Appl. Environ. Microbiol. 80, 128–137 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, S., Xiao, Y., Wang, L., et al.: Extracellular electron transfer mediated by flavins in gram-positive Bacillus sp. WS-XY1 and Yeast Pichia stipitis. Electrochim. Acta 146, 564–567 (2014)

    CAS  Google Scholar 

  80. Zhang, E., Cai, Y., Luo, Y., et al.: Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells. Can. J. Microbiol. 60, 753–759 (2014)

    CAS  PubMed  Google Scholar 

  81. Zhang, T., Cui, C., Chen, S., et al.: A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem. Commun. 42, 2257–2259 (2006)

    Google Scholar 

  82. Qiao, Y., Li, C.M., Bao, S.J., et al.: Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun. 44, 1290–1292 (2008)

    Google Scholar 

  83. Zhang, T., Cui, C., Chen, S., et al.: The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Commun. 44, 293–297 (2008)

    Google Scholar 

  84. Rosenbaum, M., Aulenta, F., Villano, M., et al.: Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 102, 324–333 (2011)

    CAS  PubMed  Google Scholar 

  85. Ganigué, R., Puig, S., Batlle-Vilanova, P., et al.: Microbial electrosynthesis of butyrate from carbon dioxide. Chem. Commun. 51, 3235–3238 (2015)

    Google Scholar 

  86. Strycharz, S.M., Glaven, R.H., Coppi, M.V., et al.: Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80, 142–150 (2011)

    CAS  PubMed  Google Scholar 

  87. Dantas, J.M., Tomaz, D.M., Morgado, L., et al.: Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens. FEBS Lett. 587, 2662–2668 (2013)

    CAS  PubMed  Google Scholar 

  88. Pous, N., Carmona-Martínez, A.A., Vilajeliu-Pons, A., et al.: Bidirectional microbial electron transfer: switching an acetate oxidizing biofilm to nitrate reducing conditions. Biosens. Bioelectron. 75, 352–358 (2016)

    CAS  PubMed  Google Scholar 

  89. Ross, D.E., Flynn, J.M., Baron, D.B., et al.: Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS ONE 6, e16649 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Steinbusch, K.J., Hamelers, H.V., Schaap, J.D., et al.: Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ. Sci. Technol. 44, 513–517 (2009)

    Google Scholar 

  91. Harrington, T.D., Mohamed, A., Tran, V.N., et al.: Neutral red-mediated microbial electrosynthesis by Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis. Bioresour. Technol. 195, 57–65 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Harrington, T.D., Tran, V.N., Mohamed, A., et al.: The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresour. Technol. 192, 689–695 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Im, C.H., Kim, C., Song, Y.E., et al.: Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator. Chemosphere 191, 166–173 (2017)

    PubMed  Google Scholar 

  94. Clark, I.C., Carlson, H.K., Iavarone, A.T., et al.: Bioelectrical redox cycling of anthraquinone-2, 6-disulfonate coupled to perchlorate reduction. Energy Environ. Sci. 5, 7970–7978 (2012)

    CAS  Google Scholar 

  95. Sasaki, K., Tsuge, Y., Sasaki, D., et al.: Increase in lactate yield by growing Corynebacterium glutamicum in a bioelectrochemical reactor. J. Biosci. Bioeng. 117, 598–601 (2014)

    CAS  PubMed  Google Scholar 

  96. Wang, Y.Z., Wang, A.J., Zhou, A.J., et al.: Electrode as sole electrons donor for enhancing decolorization of azo dye by an isolated Pseudomonas sp. WYZ-2. Bioresour. Technol. 152, 530–533 (2014)

    CAS  PubMed  Google Scholar 

  97. Kundu, A., Sahu, J.N., Redzwan, G., et al.: An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int. J. Hydrog. Energy 38, 1745–1757 (2013)

    CAS  Google Scholar 

  98. Kadier, A., Simayi, Y., Kalil, M.S., et al.: A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew. Energ. 71, 466–472 (2014)

    CAS  Google Scholar 

  99. Blanchet, E., Duquenne, F., Rafrafi, Y., et al.: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. Energy Environ. Sci. 8, 3731–3744 (2015)

    CAS  Google Scholar 

  100. Jourdin, L., Lu, Y., Flexer, V., et al.: Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem 3, 581–591 (2016)

    CAS  Google Scholar 

  101. Deutzmann, J.S., Spormann, A.M.: Enhanced microbial electrosynthesis by using defined co-cultures. ISME J. 11, 704–714 (2017)

    CAS  PubMed  Google Scholar 

  102. Puig, S., Ganigué, R., Batlle-Vilanova, P., et al.: Tracking bio-hydrogen-mediated production of commodity chemicals from carbon dioxide and renewable electricity. Bioresour. Technol. 228, 201–209 (2017)

    CAS  PubMed  Google Scholar 

  103. Liu, Y., Deng, D., Lan, X.: A Highly efficient mixed-culture biofilm as anodic catalyst and insights into its enhancement through electrochemistry by comparison with G. sulfurreducens. Electrochim. Acta 155, 327–334 (2015)

    CAS  Google Scholar 

  104. Zhao, Z., Zhang, Y., Ma, W., et al.: Enriching functional microbes with electrode to accelerate the decomposition of complex substrates during anaerobic digestion of municipal sludge. Biochem. Eng. J. 111, 1–9 (2016)

    CAS  Google Scholar 

  105. Yoho, R.A., Popat, S.C., Rago, L., et al.: Anode biofilms of Geoalkalibacter ferrihydriticus exhibit electrochemical signatures of multiple electron transport pathways. Langmuir 31, 12552–12559 (2015)

    CAS  PubMed  Google Scholar 

  106. Borole, A.P., Reguera, G., Ringeisen, B., et al.: Electroactive biofilms: current status and future research needs. Energy Environ. Sci. 4, 4813–4834 (2011)

    CAS  Google Scholar 

  107. Reguera, G., Nevin, K.P., Nicoll, J.S., et al.: Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72, 7345–7348 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Rollefson, J.B., Stephen, C.S., Tien, M., et al.: Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J. Bacteriol. 193, 1023–1033 (2011)

    CAS  PubMed  Google Scholar 

  109. Sun, D., Cheng, S., Wang, A., et al.: Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms. Environ. Sci. Technol. 49, 5227–5235 (2015)

    CAS  PubMed  Google Scholar 

  110. Yu, Y.Y., Chen, H.L., Yong, Y.C., et al.: Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells. Chem. Commun. 47, 12825–12827 (2011)

    CAS  Google Scholar 

  111. Jain, A., Zhang, X., Pastorella, G., et al.: Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode. Bioelectrochemistry 87, 28–32 (2012)

    CAS  PubMed  Google Scholar 

  112. Yong, Y.C., Liao, Z.H., Sun, J.Z., et al.: Enhancement of coulombic efficiency and salt tolerance in microbial fuel cells by graphite/alginate granules immobilization of Shewanella oneidensis MR-1. Process Biochem. 48, 1947–1951 (2013)

    CAS  Google Scholar 

  113. Yong, Y.C., Yu, Y.Y., Zhang, X., et al.: Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Angew. Chem. Int. Ed. 53, 4480–4483 (2014)

    CAS  Google Scholar 

  114. Cao, B., Shi, L., Brown, R.N., et al.: Extracellular polymeric substances from Shewanella sp HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ. Microbiol. 13, 1018–1031 (2011)

    CAS  PubMed  Google Scholar 

  115. De Vriendt, K., Theunissen, S., Carpentier, W., et al.: Proteomics of Shewanella oneidensis MR-1 biofilm reveals differentially expressed proteins, including AggA and RibB. Proteomics 5, 1308–1316 (2005)

    PubMed  Google Scholar 

  116. Zou, L., Qiao, Y., Wu, X.S., et al.: Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells. J. Power Sources 328, 143–150 (2016)

    CAS  Google Scholar 

  117. Qiao, Y., Qiao, Y.J., Zou, L., et al.: Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Bioresour. Technol. 198, 1–6 (2015)

    CAS  PubMed  Google Scholar 

  118. Qiao, Y.J., Qiao, Y., Zou, L., et al.: Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Bioelectrochemistry 117, 34–39 (2017)

    CAS  PubMed  Google Scholar 

  119. Jourdin, L., Freguia, S., Donose, B.C., et al.: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J. Mater. Chem. A 2, 13093–13102 (2014)

    CAS  Google Scholar 

  120. Jourdin, L., Freguia, S., Donose, B.C., et al.: Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source. Bioelectrochemistry 102, 56–63 (2015)

    CAS  PubMed  Google Scholar 

  121. Patil, S.A., Arends, J.B., Vanwonterghem, I., et al.: Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2. Environ. Sci. Technol. 49, 8833–8843 (2015)

    CAS  PubMed  Google Scholar 

  122. Min, D., Cheng, L., Zhang, F., et al.: Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. Environ. Sci. Technol. 51, 5082–5089 (2017)

    CAS  PubMed  Google Scholar 

  123. Yong, X.Y., Shi, D.Y., Chen, Y.L., et al.: Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresour. Technol. 152, 220–224 (2014)

    CAS  PubMed  Google Scholar 

  124. Yong, Y.C., Wu, X.Y., Sun, J.Z., et al.: Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: a review. Chemosphere 140, 18–25 (2015)

    CAS  PubMed  Google Scholar 

  125. Yong, Y.C., Yu, Y.Y., Li, C.M., et al.: Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells. Biosens. Bioelectron. 30, 87–92 (2011)

    CAS  PubMed  Google Scholar 

  126. Wang, V.B., Chua, S.L., Cao, B., et al.: Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in Pseudomonas aeruginosa microbial fuel cells. PLoS ONE 8, e63129 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu, J., Qiao, Y., Lu, Z.S., et al.: Enhance electron transfer and performance of microbial fuel cells by perforating the cell membrane. Electrochem. Commun. 15, 50–53 (2012)

    Google Scholar 

  128. Wen, Q., Kong, F., Ma, F., et al.: Improved performance of air-cathode microbial fuel cell through additional Tween 80. J. Power Sources 196, 899–904 (2011)

    CAS  Google Scholar 

  129. Hou, H.J., Chen, X.F., Thomas, A.W., et al.: Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells. Adv. Mater. 25, 1593–1597 (2013)

    CAS  PubMed  Google Scholar 

  130. Wang, V.B., Kirchhofer, N.D., Chen, X.F., et al.: Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1. Electrochem. Commun. 41, 55–58 (2014)

    Google Scholar 

  131. Wang, V.B., Yantara, N., Koh, T.M., et al.: Uncovering alternate charge transfer mechanisms in Escherichia coli chemically functionalized with conjugated oligoelectrolytes. Chem. Commun. 50, 8223–8226 (2014)

    CAS  Google Scholar 

  132. Wang, Y.P., Yu, S.S., Zhang, H.L., et al.: Roles of 3,3′,4′,5-tetrachlorosalicylanilide in regulating extracellular electron transfer of Shewanella oneidensis MR-1. Sci. Rep. 5, 7991 (2015)

    PubMed  PubMed Central  Google Scholar 

  133. Yong, Y.C., Yu, Y.Y., Yang, Y., et al.: Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin. Biotechnol. Bioeng. 110, 408–416 (2013)

    CAS  PubMed  Google Scholar 

  134. Zheng, T., Xu, Y.S., Yong, X.Y., et al.: Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells. Bioresource Technol. 197, 416–421 (2015)

    CAS  Google Scholar 

  135. Cotter, P.A., Stibitz, S.: c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10, 17–23 (2007)

    CAS  PubMed  Google Scholar 

  136. Romling, U., Galperin, M.Y., Gomelsky, M.: Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77, 1–52 (2013)

    PubMed  PubMed Central  Google Scholar 

  137. Thormann, K.M., Duttler, S., Saville, R.M., et al.: Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J. Bacteriol. 188, 2681–2691 (2006)

    CAS  PubMed  Google Scholar 

  138. Chao, L., Rakshe, S., Leff, M., et al.: PdeB, a cyclic di-GMP-Specific phosphodiesterase that regulates Shewanella oneidensis MR-1 motility and biofilm formation. J. Bacteriol. 195, 3827–3833 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, T., Yu, Y.Y., Deng, X.P., et al.: Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnol. Bioeng. 112, 2051–2059 (2015)

    CAS  PubMed  Google Scholar 

  140. Leang, C., Malvankar, N.S., Franks, A.E., et al.: Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy Environ. Sci. 6, 1901–1908 (2013)

    CAS  Google Scholar 

  141. Kouzuma, A., Meng, X.Y., Kimura, N., et al.: Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl. Environ. Microbiol. 76, 4151–4157 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ding, Y., Peng, N., Du, Y., et al.: Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization. Appl. Environ. Microbiol. 80, 1498–1506 (2014)

    PubMed  PubMed Central  Google Scholar 

  143. Johnson, E.T., Baron, D.B., Naranjo, B., et al.: Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl. Environ. Microbiol. 76, 4123–4129 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yu, S., Lai, B., Plan, M.R., et al.: Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase. Biotechnol. Bioeng. 115, 145–155 (2017)

    PubMed  Google Scholar 

  145. Yong, Y.C., Yu, Y.Y., Yang, Y., et al.: Increasing intracellular releasable electrons dramatically enhances bioelectricity output in microbial fuel cells. Electrochem. Commun. 19, 13–16 (2012)

    CAS  Google Scholar 

  146. Yong, X.Y., Feng, J., Chen, Y.L., et al.: Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosens. Bioelectron. 56, 19–25 (2014)

    CAS  PubMed  Google Scholar 

  147. Shin, H.J., Jung, K.A., Nam, C.W., et al.: A genetic approach for microbial electrosynthesis system as biocommodities production platform. Bioresour. Technol. 245, 1421–1429 (2017)

    CAS  PubMed  Google Scholar 

  148. Ueki, T., Nevin, K.P., Woodard, T.L., Lovley, D.R.: Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5, e01636 (2014)

    PubMed  PubMed Central  Google Scholar 

  149. Li, H., Opgenorth, P.H., Wernick, D.G., et al.: Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596 (2012)

    CAS  PubMed  Google Scholar 

  150. Grousseau, E., Lu, J., Gorret, N., et al.: Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl. Microbiol. Biotechnol. 98, 4277–4290 (2014)

    CAS  PubMed  Google Scholar 

  151. Torella, J.P., Gagliardi, C.J., Chen, J.S., et al.: Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl. Acad. Sci. USA 112, 2337–2342 (2015)

    CAS  PubMed  Google Scholar 

  152. Thomas, K., Anne, S., Sonja, F., et al.: CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with Cupriavidus necator. Angew. Chem. Int. Ed. 57, 1879–1882 (2018)

    Google Scholar 

  153. Zhang, J., Li, C.M.: Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 41, 7016–7031 (2012)

    CAS  PubMed  Google Scholar 

  154. Linares, N., Silvestre-Albero, A.M., Serrano, E., et al.: Mesoporous materials for clean energy technologies. Chem. Soc. Rev. 43, 7681–7717 (2014)

    CAS  PubMed  Google Scholar 

  155. Kim, B., An, J., Fapyane, D., et al.: Bioelectronic platforms for optimal bio-anode of bio-electrochemical systems: from nano- to macro scopes. Bioresour. Technol. 195, 2–13 (2015)

    CAS  PubMed  Google Scholar 

  156. Guo, K., Prevoteau, A., Patil, S.A., et al.: Engineering electrodes for microbial electrocatalysis. Curr. Opin. Biotechnol. 33, 149–156 (2015)

    CAS  PubMed  Google Scholar 

  157. Nardecchia, S., Carriazo, D., Ferrer, M.L., et al.: Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42, 794–830 (2013)

    CAS  PubMed  Google Scholar 

  158. Xie, X., Hu, L., Pasta, M., et al.: Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett. 11, 291–296 (2011)

    CAS  PubMed  Google Scholar 

  159. Liu, J., Qiao, Y., Guo, C.X., et al.: Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour. Technol. 114, 275–280 (2012)

    CAS  PubMed  Google Scholar 

  160. Cong, H.P., Chen, J.F., Yu, S.H.: Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem. Soc. Rev. 43, 7295–7325 (2014)

    CAS  PubMed  Google Scholar 

  161. Chen, W., Huang, Y.X., Li, D.B., et al.: Preparation of a macroporous flexible three dimensional graphene sponge using an ice-template as the anode material for microbial fuel cells. RSC Adv. 4, 21619–21624 (2014)

    CAS  Google Scholar 

  162. Huang, L.H., Li, X.F., Ren, Y.P., et al.: A monolithic three-dimensional macroporous graphene anode with low cost for high performance microbial fuel cells. RSC Adv. 6, 21001–21010 (2016)

    CAS  Google Scholar 

  163. Qiao, Y., Wen, G.Y., Wu, X.S., et al.: L-Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells. RSC Adv. 5, 58921–58927 (2015)

    CAS  Google Scholar 

  164. He, Z., Liu, J., Qiao, Y., et al.: Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett. 12, 4738–4741 (2012)

    CAS  PubMed  Google Scholar 

  165. Katuri, K., Ferrer, M.L., Gutierrez, M.C., et al.: Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation. Energy Environ. Sci. 4, 4201–4210 (2011)

    CAS  Google Scholar 

  166. Xie, X., Ye, M., Hu, L., et al.: Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ. Sci. 5, 5265–5270 (2012)

    CAS  Google Scholar 

  167. Xie, X., Yu, G., Liu, N., et al.: Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci. 5, 6862–6866 (2012)

    CAS  Google Scholar 

  168. Wang, H., Wang, G., Ling, Y., et al.: High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 5, 10283–10290 (2013)

    CAS  PubMed  Google Scholar 

  169. Ren, H., Tian, H., Gardner, C.L., et al.: A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10 000 W m−3. Nanoscale 8, 3539–3547 (2016)

    CAS  PubMed  Google Scholar 

  170. Flexer, V., Chen, J., Donose, B.C., et al.: The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy Environ. Sci. 6, 1291–1298 (2013)

    CAS  Google Scholar 

  171. Jourdin, L., Grieger, T., Monetti, J., et al.: High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ. Sci. Technol. 49, 13566–13574 (2015)

    CAS  PubMed  Google Scholar 

  172. Jourdin, L., Freguia, S., Flexer, V.: Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions. Environ. Sci. Technol. 50, 1982–1989 (2016)

    CAS  PubMed  Google Scholar 

  173. Chen, S., He, G., Hu, X., et al.: A Three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems. Chemsuschem 5, 1059–1063 (2012)

    CAS  PubMed  Google Scholar 

  174. Chen, S., Liu, Q., He, G., et al.: Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells. J. Mater. Chem. 22, 18609–18613 (2012)

    CAS  Google Scholar 

  175. Yuan, Y., Zhou, S., Liu, Y.: Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ. Sci. Technol. 47, 14525–14532 (2013)

    CAS  PubMed  Google Scholar 

  176. Zhu, H., Wang, H., Li, Y., et al.: Lightweight, conductive hollow fibers from nature as sustainable electrode materials for microbial energy harvesting. Nano Energy 10, 268–276 (2014)

    CAS  Google Scholar 

  177. Chen, S., He, G., Liu, Q., et al.: Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis. Energy Environ. Sci. 5, 9769–9772 (2012)

    CAS  Google Scholar 

  178. Anitha, V.C., Lee, J.H., Lee, J., et al.: Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability. Nanotechnology 26, 065102 (2015)

    CAS  PubMed  Google Scholar 

  179. Wang, W., You, S.J., Gong, X.B., et al.: Bioinspired nanosucker array for enhancing bioelectricity generation in microbial fuel cells. Adv. Mater. 28, 270–275 (2016)

    CAS  PubMed  Google Scholar 

  180. Kipf, E., Koch, J., Geiger, B., et al.: Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresour. Technol. 146, 386–392 (2013)

    CAS  PubMed  Google Scholar 

  181. Kipf, E., Zengerle, R., Gescher, J., et al.: How does the choice of anode material influence electrical performance? A comparison of two microbial fuel cell model organisms. ChemElectroChem 1, 1849–1853 (2014)

    CAS  Google Scholar 

  182. Liu, M., Zhou, M., Ma, L., et al.: Architectural design of hierarchically meso-macroporous carbon for microbial fuel cell anodes. RSC Adv. 6, 27993–27998 (2016)

    CAS  Google Scholar 

  183. Kumar, G.G., Sarathi, V.G.S., Nahm, K.S.: Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens. Bioelectron. 43, 461–475 (2013)

    CAS  PubMed  Google Scholar 

  184. Zhang, T., Nie, H.R., Bain, T.S., et al.: Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6, 217–224 (2013)

    CAS  Google Scholar 

  185. Santoro, C., Guilizzoni, M., Baena, J.P.C., et al.: The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67, 128–139 (2014)

    CAS  Google Scholar 

  186. Chen, X.F., Wang, X.S., Liao, K.T., et al.: Improved power output by incorporating polyvinyl alcohol into the anode of a microbial fuel cell. J. Mater. Chem. A 3, 19402–19409 (2015)

    CAS  Google Scholar 

  187. Ding, C.M., Lv, M.L., Zhu, Y., et al.: Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. Angew. Chem. Int. Ed. 54, 1446–1451 (2015)

    CAS  Google Scholar 

  188. Kumar, A., Conghaile, P.O., Katuri, K., et al.: Arylamine functionalization of carbon anodes for improved microbial electrocatalysis. RSC Adv. 3, 18759–18761 (2013)

    CAS  Google Scholar 

  189. Liu, J., Liu, J.F., He, W.H., et al.: Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode. J. Power Sources 265, 391–396 (2014)

    CAS  Google Scholar 

  190. Zhao, C., Wang, Y., Shi, F., et al.: High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode. Chem. Commun. 49, 6668–6670 (2013)

    CAS  Google Scholar 

  191. Wei, H., Wu, X.S., Zou, L., et al.: Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells. J. Power Sources 315, 192–198 (2016)

    CAS  Google Scholar 

  192. Chen, L., Tremblay, P.L., Mohanty, S., et al.: Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide-tetraethylene pentamine. J. Mater. Chem. A 4, 8395–8401 (2016)

    CAS  Google Scholar 

  193. Zhou, M., Wang, H.L., Guo, S.: Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45, 1273–1307 (2016)

    CAS  PubMed  Google Scholar 

  194. Yu, Y.Y., Guo, C.X., Yong, Y.C., et al.: Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere 140, 26–33 (2015)

    CAS  PubMed  Google Scholar 

  195. Han, T.H., Sawant, S.Y., Hwang, S.J., et al.: Three-dimensional, highly porous N-doped carbon foam as microorganism propitious, efficient anode for high performance microbial fuel cell. RSC Adv. 6, 25799–25807 (2016)

    CAS  Google Scholar 

  196. Jiang, X., Hu, J., Lieber, A.M., et al.: Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 14, 6737–6742 (2014)

    CAS  PubMed  Google Scholar 

  197. Xu, Y.S., Zheng, T., Yong, X.Y., et al.: Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells. Bioresour. Technol. 211, 542–547 (2016)

    CAS  PubMed  Google Scholar 

  198. Adachi, M., Shimomura, T., Komatsu, M., et al.: A novel mediator-polymer-modified anode for microbial fuel cells. Chem. Commun. 44, 2055–2057 (2008)

    Google Scholar 

  199. Liu, X.W., Sun, X.F., Chen, J.J., et al.: Phenothiazine derivative-accelerated microbial extracellular electron transfer in bioelectrochemical system. Sci. Rep. 3, 1616 (2013)

    PubMed  PubMed Central  Google Scholar 

  200. Guo, K., Chen, X., Freguia, S., et al.: Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems. Biosens. Bioelectron. 47, 184–189 (2013)

    CAS  PubMed  Google Scholar 

  201. Tang, X.H., Li, H.R., Du, Z.W., et al.: Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells. Bioresour. Technol. 164, 184–188 (2014)

    CAS  PubMed  Google Scholar 

  202. Xu, H.D., Quan, X.C.: Anode modification with peptide nanotubes encapsulating riboflavin enhanced power generation in microbial fuel cells. Int. J. Hydro. Energy 41, 1966–1973 (2016)

    CAS  Google Scholar 

  203. Zhao, C.E., Wu, J.S., Kjelleberg, S., Loo, J.S.C., Zhang, Q.C.: Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells. Small 11, 3440–3443 (2015)

    CAS  PubMed  Google Scholar 

  204. Ding, C., Liu, H., Zhu, Y., et al.: Control of bacterial extracellular electron transfer by a solid-state mediator of polyaniline nanowire arrays. Energy Environ. Sci. 5, 8517–8522 (2012)

    CAS  Google Scholar 

  205. Ding, C.M., Liu, H., Lv, M.L., et al.: Hybrid bio-organic interfaces with matchable nanoscale topography for durable high extracellular electron transfer activity. Nanoscale 6, 7866–7871 (2014)

    CAS  PubMed  Google Scholar 

  206. Qiao, Y., Li, C.M., Bao, S.-J., et al.: Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170, 79–84 (2007)

    CAS  Google Scholar 

  207. Yong, Y.C., Dong, X.C., Chan-Park, M.B., et al.: Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6, 2394–2400 (2012)

    CAS  PubMed  Google Scholar 

  208. Zhao, C., Gai, P., Liu, C., et al.: Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J. Mater. Chem. A 1, 12587–12594 (2013)

    CAS  Google Scholar 

  209. Zou, L., Qiao, Y., Zhong, C., et al.: Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells. Electrochim. Acta 229, 31–38 (2017)

    CAS  Google Scholar 

  210. Wang, Y., Zhao, C.E., Sun, D., et al.: A graphene/poly(3,4-ethylenedioxythiophene) hybrid as an anode for high-performance microbial fFuel cells. ChemPlusChem 78, 823–829 (2013)

    CAS  Google Scholar 

  211. Kang, Y.L., Ibrahim, S., Pichiah, S.: Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresour. Technol. 189, 364–369 (2015)

    CAS  PubMed  Google Scholar 

  212. Quan, X., Sun, B., Xu, H.: Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells. Electrochim. Acta 182, 815–820 (2015)

    CAS  Google Scholar 

  213. Zou, L., Qiao, Y., Wu, X.S., et al.: Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysis. J. Power Sources 276, 208–214 (2015)

    CAS  Google Scholar 

  214. Liu, M.M., Zhou, M.H., Yang, H.J., et al.: Titanium dioxide nanoparticles modified three dimensional ordered macroporous carbon for improved energy output in microbial fuel cells. Electrochim. Acta 190, 463–470 (2016)

    CAS  Google Scholar 

  215. Wen, Z., Ci, S., Mao, S., et al.: TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J. Power Sources 234, 100–106 (2013)

    CAS  Google Scholar 

  216. Huang, L., Zhang, X., Shen, D., et al.: Effect of heat-treatment atmosphere on the current generation of TiO2 nanotube array electrodes in microbial fuel cells. Electrochim. Acta 257, 203–209 (2017)

    CAS  Google Scholar 

  217. Feng, H., Liang, Y., Guo, K., et al.: TiO2 nanotube arrays modified titanium: a stable, scalable, and cost-effective bioanode for microbial fuel cells. Environ. Sci. Technol. Lett. 3, 420–424 (2016)

    CAS  Google Scholar 

  218. Yin, T., Lin, Z., Su, L., et al.: Preparation of vertically oriented TiO2 nanosheets modified carbon paper electrode and its enhancement to the performance of MFCs. ACS Appl. Mater. Interfaces. 7, 400–408 (2015)

    CAS  PubMed  Google Scholar 

  219. Yin, T., Li, H., Su, L., et al.: The catalytic effect of TiO2 nanosheets on extracellular electron transfer of Shewanella loihica PV-4. Phys. Chem. Chem. Phys. 18, 29871–29878 (2016)

    CAS  PubMed  Google Scholar 

  220. Qiao, Y., Bao, S.J., Li, C.M., et al.: Nanostructured polyanifine/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2, 113–119 (2008)

    CAS  PubMed  Google Scholar 

  221. Zhao, C.E., Wang, W.J., Sun, D., et al.: Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells. Chem. Eur. J. 20, 7091–7097 (2014)

    CAS  PubMed  Google Scholar 

  222. Maurer-Jones, M.A., Gunsolus, I.L., Meyer, B.M., et al.: Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis. Anal. Chem. 85, 5810–5818 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Lowy, D.A., Tender, L.M., Zeikus, J.G., et al.: Harvesting energy from the marine sediment-water interface II: kinetic activity of anode materials. Biosens. Bioelectron. 21, 2058–2063 (2006)

    CAS  PubMed  Google Scholar 

  224. Kato, S., Hashimoto, K., Watanabe, K.: Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. USA 109, 10042–10046 (2012)

    CAS  PubMed  Google Scholar 

  225. Peng, X.H., Yu, H.B., Wang, X., et al.: Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells. Bioresour. Technol. 121, 450–453 (2012)

    CAS  PubMed  Google Scholar 

  226. Peng, X.H., Yu, H.B., Ai, L.N., et al.: Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresour. Technol. 144, 689–692 (2013)

    CAS  PubMed  Google Scholar 

  227. Nakamura, R., Kai, F., Okamoto, A., et al.: Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides. J. Mater. Chem. A 1, 5148–5157 (2013)

    CAS  Google Scholar 

  228. Wang, L., Su, L., Chen, H.H., et al.: Carbon paper electrode modified by goethite nanowhiskers promotes bacterial extracellular electron transfer. Mater. Lett. 141, 311–314 (2015)

    CAS  Google Scholar 

  229. Lv, Z.S., Xie, D.H., Yue, X.J., et al.: Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. J. Power Sources 210, 26–31 (2012)

    CAS  Google Scholar 

  230. Kalathil, S., Nguyen, V.H., Shim, J.J., et al.: Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J. Nanosci. Nanotechnol. 13, 7712–7716 (2013)

    CAS  PubMed  Google Scholar 

  231. Zhang, C.Y., Liang, P., Yang, X.F., et al.: Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens. Bioelectron. 81, 32–38 (2016)

    CAS  PubMed  Google Scholar 

  232. Chen, W.F., Muckerman, J.T., Fujita, E.: Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49, 8896–8909 (2013)

    CAS  Google Scholar 

  233. Rosenbaum, M., Zhao, F., Quaas, M., et al.: Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells. Appl. Catal. B-Environ. 74, 261–269 (2007)

    CAS  Google Scholar 

  234. Rosenbaum, M., Zhao, F., Schröder, U., et al.: Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angew. Chem. Int. Ed. 45, 6658–6661 (2006)

    CAS  Google Scholar 

  235. Zeng, L.Z., Zhao, S.F., Wang, Y.Q., et al.: Ni/β-Mo2C as noble-metal-free anodic electrocatalyst of microbial fuel cell based on Klebsiella pneumoniae. Int. J. Hydrog. Energ. 37, 4590–4596 (2012)

    CAS  Google Scholar 

  236. Wang, Y., Li, B., Cui, D., et al.: Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosens. Bioelectron. 51, 349–355 (2014)

    CAS  PubMed  Google Scholar 

  237. Zou, L., Lu, Z., Huang, Y., et al.: Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells. J. Power Sources 359, 549–555 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank financial support from the National Key Research and Development Program of China (2017YFC1600902), the Fundamental Research Funds for the Central Universities (No. XDJK2018B003), Project of Science and Technology Research of Education Department of Jiangxi Province (No. GJJ160344) and the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Qiao or Chang Ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Qiao, Y. & Li, C.M. Boosting Microbial Electrocatalytic Kinetics for High Power Density: Insights into Synthetic Biology and Advanced Nanoscience. Electrochem. Energ. Rev. 1, 567–598 (2018). https://doi.org/10.1007/s41918-018-0020-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0020-1

Keywords

PACS

Navigation