Skip to main content
Log in

A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules

具有水稳性且携带氨基官能团的多功能fcu-MOF用于小分子分离

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The energy-efficient purification of methane from C2-hydrocarbons is of great significance for the upgrading of natural gas. So does the capture of carbon dioxide for remission of greenhouse effect. It is well established that some functional sites, such as open metals sites, Lewis basic nitrogen sites and fluorine groups, have shown significantly enhanced affinity toward more polarizable molecules. Thus, a water-stable Eu3+-based fcu-metal-organic framework (MOF) (compound 1) with amino functional groups has been successfully constructed through a reticular chemistry approach. As a result, the activated compound 1 exhibits moderately high uptakes of C2-hydrocarbons, but a less obvious adsorption of CH4 at the same conditions. Among them, the adsorption capacity of C2H2 is up to 143.6 cm3 cm−3 and a relatively high selectivity of C2H2/CH4 (107.7) is obtained at near room temperature. Moreover, compound 1 is also validated as an exceptional adsorbent for CO2 capture, with the fairly high capacity of CO2 (92.6 cm3 cm−3) and CO2/N2 selectivity (151.7) at ambient conditions. The excellent performance of compound 1 is mainly driven by the exposed amino functional groups within the contracted pores. Such effect thus leads to the achievement of dual-functional platform for methane purification and carbon dioxide capture. Furthermore, compound 1 features a satisfactory water stability, which is confirmed by the powder X-ray diffraction (PXRD) analysis and the retest of porosity after being soaked in water.

摘要

甲烷的高效净化对天然气的升级改造具有重要意义. 有效捕获二氧化碳对缓解温室效应同样具有重要的科研价值. 众所周知,在材料内部引入一些功能位点, 如开放金属位点、路易斯碱氮位点、氟基团, 可以显著提高材料对易极化分子的亲和力. 本文中,我们成功地构建了一种具有水稳性且携带氨基功能基团的铕基金属有机框架材料. 活化后的样品表现出较强的C2气体吸附, 但对甲烷的吸附不明显. 其中, 在近室温条件下, 样品对乙炔的吸附量可达143.6 cm3 cm−3, 并且可获得较高的乙炔/甲烷选择性分离系数(107.7). 此外, 该材料还被证实是一种优异的二氧化碳捕获吸附剂.在环境条件下, 具有较高的二氧化碳吸附量(92.6 cm3 cm−3)和二氧化碳/氮气选择性分离系数(151.7). 上述优异的小分子吸附分离性能主要由收缩孔笼内大量裸露的氨基官能团驱动所致. 这种独特的效应使该材料呈现优异的甲烷净化和二氧化碳捕获等多功能属性. 此外, 进一步PXRD分析与水中浸泡后孔隙率的重新测试证实,该材料具有令人满意的水稳定性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choudhary VR, Mayadevi S. Adsorption of methane, ethane, ethylene, and carbon dioxide on high silica pentasil zeolites and zeolite-like materials using gas chromatography pulse technique. Separation Sci Tech, 1993, 28: 2197–2209

    Article  Google Scholar 

  2. Cavenati S, Grande CA, Rodrigues AE. Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. Energy Fuels, 2006, 20: 2648–2659

    Article  Google Scholar 

  3. He Y, Zhou W, Qian G, et al. Methane storage in metal-organic frameworks. Chem Soc Rev, 2014, 43: 5657–5678

    Article  Google Scholar 

  4. Li JR, Sculley J, Zhou HC. Metal-organic frameworks for separations. Chem Rev, 2012, 112: 869–932

    Article  Google Scholar 

  5. Liang CC, Shi ZL, He CT, et al. Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal-organic frameworks. J Am Chem Soc, 2017, 139: 13300–13303

    Article  Google Scholar 

  6. He M, Wang Y, Gao X, et al. Three ligand-originated MOF isomers: the positional effect of the methyl group on structures and selective C2H2/CH4 and CO2/CH4 adsorption properties. Dalton Trans, 2018, 47: 8983–8991

    Article  Google Scholar 

  7. Zhai QG, Bai N, Li SN, et al. Design of pore size and functionality in pillar-layered Zn-triazolate-dicarboxylate frameworks and their high CO2/CH4 and C2 hydrocarbons/CH4 selectivity. Inorg Chem, 2015, 54: 9862–9868

    Article  Google Scholar 

  8. Cui Y, Li B, He H, et al. Metal-organic frameworks as platforms for functional materials. Acc Chem Res, 2016, 49: 483–493

    Article  Google Scholar 

  9. Jiang K, Zhang L, Hu Q, et al. Indocyanine green-encapsulated nanoscale metal-organic frameworks for highly effective chemophotothermal combination cancer therapy. Mater Today Nano, 2018, 2: 50–57

    Article  Google Scholar 

  10. Huang W, Sun H, Shangguan H, et al. Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale, 2018, 10: 7851–7859

    Article  Google Scholar 

  11. Guo Y, Peng X. Mass transport through metal organic framework membranes. Sci China Mater, 2019, 62: 25–42

    Article  Google Scholar 

  12. Gong YN, Ouyang T, He CT, et al. Photoinduced water oxidation by an organic ligand incorporated into the framework of a stable metal-organic framework. Chem Sci, 2016, 7: 1070–1075

    Article  Google Scholar 

  13. Teplensky MH, Fantham M, Li P, et al. Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release. J Am Chem Soc, 2017, 139: 7522–7532

    Article  Google Scholar 

  14. Wu H, Shen C, Xia C, et al. Versatile MOF-derived cobalt catalyst for the reductive amination. Sci China Mater, 2017, 60: 1269–1271

    Article  Google Scholar 

  15. Jiao L, Jiang HL. Metal-organic-framework-based single-atom catalysts for energy applications. Chem, 2019, 5: 786–804

    Article  Google Scholar 

  16. Fang Y, Liu W, Teat SJ, et al. A systematic approach to achieving high performance hybrid lighting phosphors with excellent thermal- and photostability. Adv Funct Mater, 2017, 27: 1603444

    Article  Google Scholar 

  17. Wang H, Xu J, Zhang DS, et al. Crystalline capsules: metal-organic frameworks locked by size-matching ligand bolts. Angew Chem Int Ed, 2015, 54: 5966–5970

    Article  Google Scholar 

  18. Zhao D, Kong C, Du H, et al. A molecular-templating strategy to polyamine-incorporated porous organic polymers for unprecedented CO2 capture and separation. Sci China Mater, 2019, 62: 448–454

    Article  Google Scholar 

  19. Sasan K, Lin Q, Mao C, et al. Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel. Nanoscale, 2016, 8: 10913–10916

    Article  Google Scholar 

  20. Chen CX, Wei ZW, Jiang JJ, et al. Dynamic spacer installation for multirole metal-organic frameworks: a new direction toward multifunctional MOFs achieving ultrahigh methane storage working capacity. J Am Chem Soc, 2017, 139: 6034–6037

    Article  Google Scholar 

  21. Liao PQ, Huang NY, Zhang WX, et al. Controlling guest conformation for efficient purification of butadiene. Science, 2017, 356: 1193–1196

    Article  Google Scholar 

  22. Aguila B, Sun Q, Wang X, et al. Lower activation energy for catalytic reactions through host-guest cooperation within metal-organic frameworks. Angew Chem, 2018, 130: 10264–10268

    Article  Google Scholar 

  23. Yi FY, Chen D, Wu MK, et al. Chemical sensors based on metal-organic frameworks. ChemPlusChem, 2016, 81: 675–690

    Article  Google Scholar 

  24. Li B, Wen HM, Yu Y, et al. Nanospace within metal-organic frameworks for gas storage and separation. Mater Today Nano, 2018, 2: 21–49

    Article  Google Scholar 

  25. Hu TL, Wang H, Li B, et al. Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nat Commun, 2015, 6: 7328

    Article  Google Scholar 

  26. Haldar R, Inukai M, Horike S, et al. 113Cd nuclear magnetic resonance as a probe of structural dynamics in a flexible porous framework showing selective O2/N2 and CO2/N2 adsorption. Inorg Chem, 2016, 55: 4166–4172

    Article  Google Scholar 

  27. Lin RB, Li L, Wu H, et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J Am Chem Soc, 2017, 139: 8022–8028

    Article  Google Scholar 

  28. He H, Sun Q, Gao W, et al. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation. Angew Chem Int Ed, 2018, 57: 4657–4662

    Article  Google Scholar 

  29. Zhang Z, Yao ZZ, Xiang S, et al. Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy Environ Sci, 2014, 7: 2868–2899

    Article  Google Scholar 

  30. Lu W, Wei Z, Gu ZY, et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev, 2014, 43: 5561–5593

    Article  Google Scholar 

  31. Bai Y, Dou Y, Xie LH, et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev, 2016, 45: 2327–2367

    Article  Google Scholar 

  32. Zhang L, Jiang K, Zhang J, et al. Low-cost and high-performance microporous metal-organic framework for separation of acetylene from carbon dioxide. ACS Sustain Chem Eng, 2019, 7: 1667–1672

    Article  Google Scholar 

  33. Chang Z, Yang DH, Xu J, et al. Flexible metal-organic frameworks: recent advances and potential applications. Adv Mater, 2015, 27: 5432–5441

    Article  Google Scholar 

  34. Wang X, Chi C, Zhang K, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat Commun, 2017, 8: 14460

    Article  Google Scholar 

  35. Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater, 2014, 14: 48–55

    Article  Google Scholar 

  36. Matsumoto M, Kitaoka T. Ultraselective gas separation by nano-porous metal-organic frameworks embedded in gas-barrier nanocellulose films. Adv Mater, 2016, 28: 1765–1769

    Article  Google Scholar 

  37. Zhang L, Jiang K, Li L, et al. Efficient separation of C2H2 from C2H2/CO2 mixtures in an acid-base resistant metal-organic framework. Chem Commun, 2018, 54: 4846–4849

    Article  Google Scholar 

  38. Deng H, Doonan CJ, Furukawa H, et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science, 2010, 327: 846–850

    Article  Google Scholar 

  39. Wen HM, Wang H, Li B, et al. A microporous metal-organic framework with lewis basic nitrogen sites for high C2H2 storage and significantly enhanced C2H2/CO2 separation at ambient conditions. Inorg Chem, 2016, 55: 7214–7218

    Article  Google Scholar 

  40. Yang L, Cui X, Zhang Z, et al. An asymmetric anion-pillared metal-organic framework as a multisite adsorbent enables simultaneous removal of propyne and propadiene from propylene. Angew Chem, 2018, 130: 13329–13333

    Article  Google Scholar 

  41. Chui SSY, Lo SMF, Charmant JPH, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 1999, 283: 1148–1150

    Article  Google Scholar 

  42. Kaye SS, Dailly A, Yaghi OM, et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc, 2007, 129: 14176–14177

    Article  Google Scholar 

  43. Xue DX, Belmabkhout Y, Shekhah O, et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J Am Chem Soc, 2015, 137: 5034–5040

    Article  Google Scholar 

  44. Yi P, Huang H, Peng Y, et al. A series of europium-based metal organic frameworks with tuned intrinsic luminescence properties and detection capacities. RSC Adv, 2016, 6: 111934–111941

    Article  Google Scholar 

  45. Chen F, Wang Y, Bai D, et al. Selective adsorption of C2H2 and CO2 from CH4 in an isoreticular series of MOFs constructed from unsymmetrical diisophthalate linkers and the effect of alkoxy group functionalization on gas adsorption. J Mater Chem A, 2018, 6: 3471–3478

    Article  Google Scholar 

  46. Zhang L, Jiang K, Li Y, et al. Microporous metal-organic framework with exposed amino functional group for high acetylene storage and excellent C2H2/CO2 and C2H2/CH4 separations. Cryst Growth Des, 2017, 17: 2319–2322

    Article  Google Scholar 

  47. Pang J, Jiang F, Wu M, et al. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat Commun, 2015, 6: 7575

    Article  Google Scholar 

  48. Zhang Z, Xiang S, Hong K, et al. Triple framework interpenetration and immobilization of open metal sites within a microporous mixed metal-organic framework for highly selective gas adsorption. Inorg Chem, 2012, 51: 4947–4953

    Article  Google Scholar 

  49. Alawisi H, Li B, He Y, et al. A microporous metal-organic framework constructed from a new tetracarboxylic acid for selective gas separation. Cryst Growth Des, 2014, 14: 2522–2526

    Article  Google Scholar 

  50. Chen Z, Xiang S, Arman HD, et al. Three-dimensional pillar-layered copper(II) metal-organic framework with immobilized functional OH groups on pore surfaces for highly selective CO2/CH4 and C2H2/CH4 gas sorption at room temperature. Inorg Chem, 2011, 50: 3442–3446

    Article  Google Scholar 

  51. Cai J, Yu J, Xu H, et al. A doubly interpenetrated metal-organic framework with open metal sites and suitable pore sizes for highly selective separation of small hydrocarbons at room temperature. Cryst Growth Des, 2013, 13: 2094–2097

    Article  Google Scholar 

  52. Huang Y, Lin Z, Fu H, et al. Porous anionic indium-organic framework with enhanced gas and vapor adsorption and separation ability. ChemSusChem, 2014, 7: 2647–2653

    Article  Google Scholar 

  53. Ma JX, Guo J, Wang H, et al. Microporous lanthanide metal-organic framework constructed from lanthanide metalloligand for selective separation of C2H2/CO2 and C2H2/CH4 at room temperature. Inorg Chem, 2017, 56: 7145–7150

    Article  Google Scholar 

  54. Guo ZJ, Yu J, Zhang YZ, et al. Water-stable In(III)-based metal-organic frameworks with rod-shaped secondary building units: single-crystal to single-crystal transformation and selective sorption of C2H2 over CO2 and CH4. Inorg Chem, 2017, 56: 2188–2197

    Article  Google Scholar 

  55. Chen Y, Wu H, Liu Z, et al. Liquid-assisted mechanochemical synthesis of copper based MOF-505 for the separation of CO2 over CH4 or N2. Ind Eng Chem Res, 2018, 57: 703–709

    Article  Google Scholar 

  56. Chen Y, Wu H, Lv D, et al. An ultramicroporous nickel-based metal-organic framework for adsorption separation of CO2 over N2 or CH4. Energy Fuels, 2018, 32: 8676–8682

    Article  Google Scholar 

  57. Lu Z, Bai J, Hang C, et al. The utilization of amide groups to expand and functionalize metal-organic frameworks simultaneously. Chem Eur J, 2016, 22: 6277–6285

    Article  Google Scholar 

  58. Safarifard V, Rodríguez-Hermida S, Guillerm V, et al. Influence of the amide groups in the CO2/N2 selectivity of a series of iso-reticular, interpenetrated metal-organic frameworks. Cryst Growth Des, 2016, 16: 6016–6023

    Article  Google Scholar 

  59. Liu B, Smit B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. J Phys Chem C, 2010, 114: 8515–8522

    Article  Google Scholar 

  60. Liang L, Liu C, Jiang F, et al. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat Commun, 2017, 8: 1233

    Article  Google Scholar 

  61. Liao PQ, Chen XW, Liu SY, et al. Putting an ultrahigh concentration of amine groups into a metal-organic framework for CO2 capture at low pressures. Chem Sci, 2016, 7: 6528–6533

    Article  Google Scholar 

  62. McDonald TM, D’Alessandro DM, Krishna R, et al. Enhanced carbon dioxide capture upon incorporation of N, N′-dimethyl ethylenediamine in the metal-organic framework CuBTTri. Chem Sci, 2011, 2: 2022–2028

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1609219, 51632008, 61721005, 51432001 and 51772268), and Zhejiang Provincial Natural Science Foundation (LD18E020001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanjing Cui  (崔元靖) or Guodong Qian  (钱国栋).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Zhang, L., Xia, T. et al. A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules. Sci. China Mater. 62, 1315–1322 (2019). https://doi.org/10.1007/s40843-019-9427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-9427-5

Keywords

Navigation