Skip to main content
Log in

Crystalline silicon thin-film solar cells on ceramic substrates

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We provide a review and analysis of research on crystalline silicon thin-film solar cells (CSiTFSCs) on ceramic substrates. The use of foreign substrates (non-silicon materials) for the processing of crystalline silicon solar cells could potentially decrease solar-grade silicon consumption and significantly reduce module costs. In order to enhance the efficiency potential of CSiTFSCs on ceramic substrates, high-temperature silicon film deposition is favored. High-quality electronic-grade silicon films are intended to be deposited at higher temperature as it can help increase both deposition rates and grain sizes. The potential low-cost ceramic substrates have some major restrictions in terms of cell processing technology at high temperatures. In this paper, an overview of the research on thin-film solar-cell technologies on ceramic substrates is presented. Major processing steps for CSiTFSC such as substrate/intermediate layer requirements and silicon thin-film deposition at high temperatures will be discussed. So far, devices have been demonstrated with efficiencies up to 13.4% on graphite, 8.2% on mullite, and 9.4% on silicon nitride (Si3N4) ceramic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Slaoui, R. Monna, J. Poortmans, T. Vermeulen, O. Evrard, K. Said, and J. Nijs, J. Mater. Res. 13, 2763 (1998).

    Article  Google Scholar 

  2. J. Poortmans and V. Arkhipov, Thin Film Solar Cells: Fabrication, Characterization and Applications. John Wiley & Sons, Vol. 5 (2006).

    Book  Google Scholar 

  3. J. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, and R. Mertens, Sol. Energy Mater. Sol. Cells 65, 249 (2001).

    Article  Google Scholar 

  4. I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, Prog. Photovoltaics 15, 575 (2007).

    Article  Google Scholar 

  5. L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, Thin Solid Films 511, 21 (2006).

    Article  Google Scholar 

  6. A. Focsa, I. Gordon, G. Beaucarne, O. Tuzun, A. Slaoui, and J. Poortmans, Thin Solid Films 516, 6896 (2008).

    Article  Google Scholar 

  7. A. Eyer, F. Haas, T. Kieliba, D. Oßwald, S. Reber, W. Zimmermann, and W. Warta, J. Cryst. Growth 225, 340 (2005).

    Article  Google Scholar 

  8. J. Rand, J. Cotter, C. Thomas, A. Ingram, Y. Bai, T. Ruffins, and A. Barnett, Conf. Rec. Twe. for. IEEE PVSC. Firs. Worl. Conf. on Phot. Ener. Conv., p. 1262 (1994).

    Google Scholar 

  9. S. Reber, W. Zimmermann, and T. Kieliba, Sol. Energy Mater. Sol. Cells 65, 409 (2001).

    Article  Google Scholar 

  10. G. Stollwerck, S. Reber, and C. Haessler, Adv. Mater. 13, 1820 (2001).

    Article  Google Scholar 

  11. Ö. Tüzün, A. Slaoui, C. Maurice, and S. Vallon, Appl. Phys. A. 99, (2010).

    Google Scholar 

  12. K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, Sol. Energy Mater. Sol. Cells 68, 173 (2001).

    Article  Google Scholar 

  13. C. Hebling, A. Eyer, F. Faller, A. Hurrle, R. Lüdemann, S. Reber, and W. Wettling, Adv. Solid State Phys. 38, 607 (1999).

    Article  Google Scholar 

  14. S. Reber, and W. Wettling, Appl. Phys. A. 69, 215 (1999).

    Article  Google Scholar 

  15. S. Bourdais, F. Mazel, G. Fantozzi, and A. Slaoui, A. Prog. Photovoltaics 7, 437 (1999).

    Article  Google Scholar 

  16. C. Fiori and G. De Portu, Br. Ceram. Proc. 213 (1986).

    Google Scholar 

  17. M. Tazawa, K. Yoshimura, K. Igarashi, and S. Tanemura, Sol. Energy Mater. Sol. Cells 48, 315 (1997).

    Article  Google Scholar 

  18. G. Beaucarne, S. Bourdais, A. Slaoui, and J. Poortmans, Appl. Phy. A. 79, 469 (2004).

    Google Scholar 

  19. T. Chu, H. Mollenkopf, and S. S. Chu, J. Electrochem. Soc. 123, 106 (1976).

    Article  Google Scholar 

  20. C. Hebling, S. Reber, K. Schmidt, R. Ludemann, and F. Lutz, Conf. Rec. Twen. Six. IEEE PVSC, 623 (1997).

    Google Scholar 

  21. G. Beaucarne, S. Bourdais, A. Slaoui, and J. Poortmans, Sol. Energy Mater. Sol. Cells 61, 301 (2000).

    Article  Google Scholar 

  22. R. Auer, J. Zettner, J. Krinke, G. Polisski, T. Hierl, R. Hezel, M. Schulz, H. Strunk, F. Koch, and D. Nikl, Conf. Rec. IEEE. Twe. Six. PVSC, 739 (1997).

    Google Scholar 

  23. A. Von Keitz, J. Van Roosmalen, C. Tool, S. Schiermeier, A. Van Zutphen, F. Fung, and G. Christie, 2nd WCEPV, Vienna (1998).

    Google Scholar 

  24. A. S. Reber, Electrical Confinement for the Crystalline Silicon Thin-film Solar Cell on Foreign Substrate. Ibidem-Verlag (2000).

    Google Scholar 

  25. S. Bau, S. Janz, T. Kieliba, C. Schetter, S. Reber, and F. Lutz, Proc. IEEE. 3rd. Worl. Conf. Phot. Ener. Conv. 1178 (2003).

    Google Scholar 

  26. T. Kunz, I. Burkert, R. Auer, R. Brendel, W. Buss, H. Campe, and M. Schulz, Proc. IEEE. 3rd. Worl. Conf. Phot. Ener. Conv. 1255 (2003).

    Google Scholar 

  27. A. Slaoui, S. Bourdais, G. Beaucarne, J. Poortmans, and S. Reber, Sol. Energy Mater. Sol. Cells 71, 245 (2002).

    Article  Google Scholar 

  28. J. Isenberg, S. Reber, J. Aschaber, and W. Warta, 16 EUPVSEC, Glasgow (2000).

    Google Scholar 

  29. S. Lindekugel, M. Künle, S. Janz, and S. Reber, SPIE Photo. Euro. Inter. Soc. Opt. Phot. 772506 (2010).

    Google Scholar 

  30. S. Janz, M. Kuenle, S. Lindekugel, E. Mitchell, and S. Reber, 33rd IEEE PVSC'08, 1 (2008).

    Google Scholar 

  31. J. Bloem, J. Cryst. Growth 50, 581 (1980).

    Article  Google Scholar 

  32. B. J. Baliga, J. Electrochem. Soc. 133, 5C (1986).

    Article  Google Scholar 

  33. S. Schiermeier, C. Tool, J. Van Roosmalen, L. Laas, A. Von Keitz, W. Sinke, 2nd. Wor. Conf. PV Sol. Ener. Conv. Vienna, 1673 (1998).

    Google Scholar 

  34. K. Peter, R. Kopecek, P. Fath, E. Bucher, and C. Zahedi, Sol. Energy Mater. Sol. Cells 74, 219 (2002).

    Article  Google Scholar 

  35. J. Van Roosmalen, C. Tool, R. Huiberts, R. Beenen, J. Huijsmans, and W. Sinke, Conf, Rec, 25th IEEE. PVSC'96, 657 (1996).

    Google Scholar 

  36. A. Gutjahr, C. Grasso, S. Schiermeier, P. Fung, and A. Von Keitz, 16 EUPVSEC, Glasgow (2000).

    Google Scholar 

  37. Z. Shi, T. L. Young, G. Fu Zheng, and M. A. Green, Sol. Energy Mater. Sol. Cells 31, 51 (1993).

    Article  Google Scholar 

  38. A. Gutjahr, I. S., G. Cristiani, M. Konuma, F. Banhart, V. SchoK llkopf, and H. Frey, 14th EUPVSEC, Barcelona, Spain, 1460 (1997).

    Google Scholar 

  39. D. Iencinella, E. Centurioni, and M. Grazia Busana, Sol. Energy Mater. Sol. Cells 93, 206 (2009).

    Article  Google Scholar 

  40. S. Reber, G. Stollwerck, D. Osswald, T. Kieliba, and C. Häßler, Proc. 16th EPVSEC, 1136 (2000).

    Google Scholar 

  41. H. Águas, S. K. Ram, A. Araújo, D. Gaspar, A. Vicente, S. A. Filonovich, E. Fortunato, R. Martins, and I. Ferreira, Energy Environ. Sci. 4, 4620 (2011).

    Article  Google Scholar 

  42. P. Sims, A. Ingram, E. DelleDonne, J. Yaskoff, D. Ford, J. Rand, and A. Barnett, Proc. IEEE. 3rd Wor. Conf. Phot. Ener. Conv. 1217 (2003).

    Google Scholar 

  43. I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, L. Carnel, G. Beaucarne, and J. Poortmans, Thin Solid Films 487, 113 (2005).

    Article  Google Scholar 

  44. S. Gall, J. Schneider, J. Klein, M. Muske, B. Rau, E. Conrad, I. Sieber, W. Fuhs, D. Van Gestel, and I. Gordon, 31st IEEE. PVSC'05, 975 (2005).

    Google Scholar 

  45. Y. Qiu, O. Tuzun, I. Gordon, S. Venkatachalam, A. Slaoui, G. Beaucarne, and J. Poortmans, 34th. IEEE. PVSC'09, 002419 (2009).

    Google Scholar 

  46. I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, Thin Solid Films 516, 6984 (2005).

    Article  Google Scholar 

  47. P. Prathap, O. Tuzun, D. Madi, and A. Slaoui, Sol. Energy Mater. Sol. Cells 95, S44 (2011).

    Article  Google Scholar 

  48. K. Ishii, H. Nishikawa, T. Takahashi, and Y. Hayashi, Jpn. J. Appl. Phys. 32, L770 (1993).

    Article  Google Scholar 

  49. A. Focsa, I. Gordon, J. Auger, A. Slaoui, G. Beaucarne, J. Poortmans, and C. Maurice, Renewable Energy 33, 267 (2008).

    Article  Google Scholar 

  50. A. Slaoui, A. Focsa, S. Bau, S. Reber, T. Kieliba, A. Gutjahr, R. Bilyalov, and J. Poortmans, IEEE. Proc. 3rd. Wor. Conf. Phot. Ener. Conv. 1186, (2003).

    Google Scholar 

  51. R. Shimokawa, K. Ishii, H. Nishikawa, T. Takahashi, Y. Hayashi, I. Saito, F. Nagamine, and S. Igari, Sol. Energy Mater. Sol.Cells 34, 277 (1994).

    Article  Google Scholar 

  52. W. Xu, S. Choi, and M. G. Allen, IEEE. 23rd. Inter. Confe. on Mic. Elect. Mech. Syst. (MEMS), 1187 (2010).

    Google Scholar 

  53. T. Kunz, I. Burkert, N. Gawehns, and R. Auer, Proc. 23rd EU PVSEC, Valencia, 2202 (2008).

    Google Scholar 

  54. S. Janz, S. Reber, H. Habenicht, H. Lautenschlager, and C. Schetter, IEEE 4th. Worl. Conf. Phot. Ener. Conv. 1403 (2006).

    Google Scholar 

  55. S. Bau, High-temperature CVD Silicon Films for Crystalline Silicon Thin-film Solar Cells. Ph.D thesis. University of Konstanz, Germany (2003).

    Google Scholar 

  56. R. Ludemann, S. Schaefer, C. Schule, and C. Hebling, IEEE. Conf. Rec. Phot. Spec. Conf. 159 (1997).

    Google Scholar 

  57. T. Kieliba, S. Bau, R. Schober, D. Oßwald, S. Reber, A. Eyer, and G. Willeke, Sol. Energy Mater. Sol. Cells 74, 261 (2002).

    Article  Google Scholar 

  58. D. Iencinella, E. Centurioni, A. Salomoni, B. Mazzanti, M. Busana, A. Fregni, and S. Fazio, Proc. 21st EUPVSEC, 1697 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Hong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, A.U., Lee, S.H. & Lee, S.H. Crystalline silicon thin-film solar cells on ceramic substrates. Electron. Mater. Lett. 11, 295–302 (2015). https://doi.org/10.1007/s13391-014-4254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4254-8

Keywords

Navigation