Skip to main content
Log in

Charge carriers and excitons transport in an organic solar cell-theory and simulation

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

An organic solar cell model is developed that consists of both excitonic and classical bipolar aspects of solar cells. In order to achieve this goal, the photon recycling term is imported into the equations to connect the Shockley-Queisser theory and the classical diode theory. This model for excitonic and classical bipolar solar cells can describe the combined transport and interaction of electrons, holes and excitons. For high mobilities this model reproduces the Shockley Queisser efficiency limit. We show how varying the respective mobilities of the different species changes the operation mode of the solar cell path between excitonic and bipolar. Then, the effect of conduction band offset on transport will be described in this paper. Finally, validity of reciprocity theorem between quantum efficiency and electroluminescence in this model will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Levis, Science 315, 798 (2007).

    Article  Google Scholar 

  2. M. Green, K. Emery, Y. Hishikawa, W. Warta, and E. Dunlop, Progress in Photovoltaics: Research and Applications. 19, 565 (2011).

    Article  Google Scholar 

  3. H. M. Stec, R. J. Williams, T. S. Jones, and R. A. Hatton, Adv. Funct. Mat. 21, 1709 (2011).

    Article  CAS  Google Scholar 

  4. H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, and J. Kong, IOP Science Nanotechnology 21, 50 (2010).

    Google Scholar 

  5. H. Lu, B. Akgun, and T. B. Russell, Adv. Eng. Mat. 1, 870 (2011).

    Article  CAS  Google Scholar 

  6. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, CS. Ha, and M. Ree, Nature. Mater. 5, 197 (2006).

    Article  CAS  Google Scholar 

  7. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T-Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).

    Article  CAS  Google Scholar 

  8. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater. 6, 497 (2007).

    Article  CAS  Google Scholar 

  9. S. Bertho, G. Janssen, T. J. Cleij, B. Conings, W. Moons, A. Gadisa, J. D’haen, E. Goovaerts, L. Lutsen, J. Manca, and D. Vanderzande, Sol. Energy. Mater. Sol. Cells. 92, 753 (2008).

    Article  CAS  Google Scholar 

  10. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Gratzel, Science 334, 629 (2011).

    Article  CAS  Google Scholar 

  11. S. Zhang, C. Ji, Z. Bian, R. Liut, X. Xia, D. Yun, L. Zhang, C. Huang, and A. Cao, Nano. Lett. 11, 3383 (2011).

    Article  CAS  Google Scholar 

  12. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Matter. 4, 455 (2005).

    Article  CAS  Google Scholar 

  13. L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Gratzel, Adv. Mater. 17, 813 (2005).

    Article  CAS  Google Scholar 

  14. J. Schrier, D. O. Demchenko, L.-W. Wang, and A. P. Alivisatos, Nano. Lett. 7, 2377 (2007).

    Article  CAS  Google Scholar 

  15. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986).

    Article  CAS  Google Scholar 

  16. M. A. Green, Physica. E. 14, 65 (2002).

    Article  CAS  Google Scholar 

  17. B. A. Gregg and M. C. Hanna, J. Appl. Phys. 93, 3605 (2003).

    Article  CAS  Google Scholar 

  18. B. A. Gregg, J. Phys. Chem. B. 107, 4688 (2003).

    Article  CAS  Google Scholar 

  19. R. Corkish, D. S. P. Chan, and M. A. Green, J. Appl. Phys. 79, 195 (1996).

    Article  CAS  Google Scholar 

  20. M. Burgelman and B. Minnaert, Thin. Solid. Films 511, 214 (2006).

    Article  Google Scholar 

  21. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  22. M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications, p. 62, Prentice-Hall, Englewood Cliffs, New Jersey (1982).

    Google Scholar 

  23. W. Shockley, Bell. Syst. Tech. J. 28, 435 (1949).

    Google Scholar 

  24. A. Marti, J. L. Balenzategui, and R. F. Reyna J. Appl. Phys. 82, 4067 (1997).

    Article  CAS  Google Scholar 

  25. J. Mattheis, J. H. Werner, and U. Rau, Phys. Rev. B. 77, 085203 (2008).

    Article  Google Scholar 

  26. C. Donolato, Appl. Phys. Lett. 46, 270 (1985).

    Article  Google Scholar 

  27. T. Markvart, IEEE. Trans. Electron. Devices 43, 1034 (1996).

    Article  CAS  Google Scholar 

  28. J. Rostalski and D. Meissner, Sol. Energy Mater. Sol. Cells. 63, 37 (2000).

    Article  CAS  Google Scholar 

  29. H. Hoppe and N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali. Shahini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahini, A., Abbasian, K. Charge carriers and excitons transport in an organic solar cell-theory and simulation. Electron. Mater. Lett. 8, 435–443 (2012). https://doi.org/10.1007/s13391-012-2021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2021-2

Keywords

Navigation