Skip to main content
Log in

Bibliometric analysis of nanotechnology applied in oncology from 2002 to 2011

  • Review
  • Published:
Tumor Biology

Abstract

Innovation in the last decade has endowed nanotechnology with an assortment of tools for drug delivery system, imaging, and sensing in cancer research. These rapidly emerging tools are indicative of a burgeoning field ready to expand into medical applications. The aim of this study is to analyze the applications of nanotechnology in oncology with bibliometric methods and evaluate development in this field. Literature search was performed using PubMed search engines with MeSH terms (all)—nanotechnology, nanomedicine, nanoparticle, nanocapsules, micellar systems, and oncology or cancer or neoplasms. Within 2,543 articles from 2002 to 2011 in over 50 medical magazines from over 30 countries, we did a series analysis on these articles’ countries, keywords, and authors. Our results show that articles in nanotechnology in oncology are increasing year by year, especially in recent years. Quantity and quality of the articles are becoming more and influential. In the global research, the USA is leading in this field, accounting for half above of the whole articles, followed by countries like Japan, Germany, and France and also some emerging nations like China, in the second place, and India. Subjects like nanoparticles, tumor marker, and drug delivery are the common research focus. So, with more and more scientists’ interests and attention drawn to this field, it is likely to make major breakthroughs in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care. Nanomed: Nanotechnol Biol Med. 2007;3(1):20–31.

    CAS  Google Scholar 

  2. Leonard F, Talin AA. Electrical contacts to one- and two-dimensional nanomaterials. Nat Nanotechnol. 2011;6(12):773–83.

    Article  PubMed  CAS  Google Scholar 

  3. Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nat Nanotechnol. 2007;2(10):605–15.

    Article  PubMed  CAS  Google Scholar 

  4. Wang L, Li J, Jiang Q, Zhao L. Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Trans. 2012;41(15):4544–51.

    Article  PubMed  CAS  Google Scholar 

  5. Kaittanis C, Santra S, Perez JM. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev. 2010;62(4–5):408–23.

    Article  PubMed  CAS  Google Scholar 

  6. Grossman HL, Myers WR, Vreeland VJ, Bruehl R, Alper MD, Bertozzi CR, et al. Detection of bacteria in suspension by using a superconducting quantum interference device. Proc Natl Acad Sci U S A. 2004;101(1):129–34.

    Article  PubMed  CAS  Google Scholar 

  7. Araujo EA, Andrade NJ, da Silva LH, et al. Antimicrobial effects of silver nanoparticles against bacterial cells adhered to stainless steel surfaces. J Food Prot. 2012;75(4):701–5.

    Article  PubMed  CAS  Google Scholar 

  8. Zou Y, Lee HY, Seo YC, Ahn J. Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against foodborne pathogens. J Food Sci. 2012;77(3):M165–70.

    Article  PubMed  CAS  Google Scholar 

  9. Costa C, Conte A, Buonocore GG, Del Nobile MA. Antimicrobial silver–montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol. 2011;148(3):164–7.

    PubMed  CAS  Google Scholar 

  10. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8(6):2101–41.

    Article  PubMed  CAS  Google Scholar 

  11. Mann S. Life as a nanoscale phenomenon. Angew Chem Int Ed. 2008;47(29):5306–20.

    Article  CAS  Google Scholar 

  12. Robert A, Freitas J. What is nanomedicine? Nanomed: Nanotechnol Biol Med. 2005;1:2–9.

    Google Scholar 

  13. Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomed: Nanotechnol Biol Med. 2005;1(2):101–9.

    CAS  Google Scholar 

  14. Thomas DG, Pappu RV, Baker NA. Nanoparticle ontology for cancer nanotechnology research. J Biomed Inform. 2011;44(1):59–74.

    Article  PubMed  Google Scholar 

  15. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed: Nanotechnol Biol Med. 2012;8(2):147–66.

    CAS  Google Scholar 

  16. Safra T, Muggia F, Jeffers S, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol. 2000;11(8):1029–33.

    Article  PubMed  CAS  Google Scholar 

  17. Tomao S, Miele E, Spinelli GP, Miele E, Tomao F. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed. 2009;4:99–105.

    Article  Google Scholar 

  18. Yuan D, Lv Y, Yao Y, Miao X, Wang Q, Xiao X, et al. Efficacy and safety of Abraxane in treatment of progressive and recurrent non-small cell lung cancer patients: a retrospective clinical study. Thoracic Cancer. 2012;3:341–47.

    Google Scholar 

  19. Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A. 2010;107(3):1235–40.

    Article  PubMed  CAS  Google Scholar 

  20. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2012;55:329–47.

    Article  Google Scholar 

  21. Muller RH, Ruhl D, Runge S, Schulze-Forster K, Mehnert W. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm Res. 1997;14(4):458–62.

    Article  PubMed  CAS  Google Scholar 

  22. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm. 2002;238(1):241–5.

    Article  PubMed  CAS  Google Scholar 

  23. Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release. 1999;59(3):299–307.

    Article  PubMed  CAS  Google Scholar 

  24. Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A. 2005;102(32):11539–44.

    Article  PubMed  CAS  Google Scholar 

  25. Chertok B, David AE, Yang VC. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials. 2010;31(24):6317–24.

    Article  PubMed  CAS  Google Scholar 

  26. Si HY, Li DP, Wang TM, Zhang HL, Ren FY, Xu ZG, et al. Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. J Nanosci Nanotechnol. 2010;10(4):2325–31.

    Article  PubMed  CAS  Google Scholar 

  27. Li J, Wang X, Wang C, Chen B, Dai Y, Zhang R, et al. The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells. ChemMedChem. 2007;2(3):374–8.

    Article  PubMed  CAS  Google Scholar 

  28. Wang Y, Yang T, Wang X, Wang J, Zhang X, Zhang Q. Targeted polymeric micelle system for delivery of combretastatin A4 to tumor vasculature in vitro. Pharm Res. 2010;27(9):1861–8.

    Article  PubMed  CAS  Google Scholar 

  29. Wang T, Petrenko VA, Torchilin VP. Paclitaxel-loaded polymeric micelles modified with MCF-7 cell-specific phage protein: enhanced binding to target cancer cells and increased cytotoxicity. Mol Pharm. 2010;7(4):1007–14.

    Article  PubMed  CAS  Google Scholar 

  30. Yang K, Cao YA, Shi C, et al. Quantum dot-based visual in vivo imaging for oral squamous cell carcinoma in mice. Oral Oncol. 2010;46(12):864–8.

    Article  PubMed  Google Scholar 

  31. Ji S, Liu C, Zhang B, et al. Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta (BBA)-Rev Cancer. 2010;1806(1):29–35.

    Article  CAS  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Liu or Jack Jia.

Additional information

Xifeng Dong and Xiao-chun Qiu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, X., Qiu, Xc., Liu, Q. et al. Bibliometric analysis of nanotechnology applied in oncology from 2002 to 2011. Tumor Biol. 34, 3273–3278 (2013). https://doi.org/10.1007/s13277-013-1032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1032-4

Keywords

Navigation