Skip to main content

Advertisement

Log in

Targeted Polymeric Micelle System for Delivery of Combretastatin A4 to Tumor Vasculature In Vitro

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop an efficient tumor vasculature-targeted polymeric micelle delivery system for combretastatin A4 (CA4), a novel antivascular agent.

Methods

CA4-loaded micelles were prepared from poly (ethylene glycol)-b-poly (d, l-lactide) copolymers. RGD peptides that target integrins αvβ3 and αvβ5, markers of angiogenic endothelial cells, were coupled to the surface of micelles. The micelles were characterized in terms of particle size, morphology, drug loading, and drug release. Cellular uptake of micelles was evaluated by fluorometric determination and confocal microscopy. Anti-proliferation of targeted micelles was also evaluated by SRB method.

Results

The mean diameters of CA4-loaded targeted micelles were 25.9 ± 1.3 nm and spherical in shape. Approximately 4 mg/mL of micellar CA4 loading was obtained with an entrapment efficiency of 97.2 ± 1.4%. In vitro release studies revealed that targeted micelles release CA4 in a sustained-release manner within 48 h. In vitro cellular uptake studies demonstrated that targeted micelles significantly facilitated the intracellular delivery of the encapsulated agents via integrin-mediated endocytosis. Anti-proliferation studies showed that targeted micelles containing CA4 present superior efficacy over nontargeted micelles.

Conclusion

These results suggested that RGD conjugated PEG-PLA micelles loading CA4 have potential as a new formulation for targeting angiogenic tumor vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1:149–53.

    Article  CAS  PubMed  Google Scholar 

  2. Satchi-Fainaro R, Puder M, Davies JW, Tran HT, Sampson DA, Greene AK, et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med. 2004;10:255–61.

    Article  CAS  PubMed  Google Scholar 

  3. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer. 2005;5:423–35.

    Article  CAS  PubMed  Google Scholar 

  4. Tozer GM, Kanthou C, Parkins CS, Hill SA. The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol. 2002;83:21–38.

    Article  CAS  PubMed  Google Scholar 

  5. Grosios K, Holwell SE, McGown AT, Pettit GR, Bibby MC. In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug. Br J Cancer. 1999;81:1318–27.

    Article  CAS  PubMed  Google Scholar 

  6. Iyer S, Chaplin DJ, Rosenthal DS, Boulares AH, Li LY, Smulson ME. Induction of apoptosis in proliferating human endothelial cells by the tumor-specific antiangiogenesis agent combretastatin A-4. Cancer Res. 1998;58:4510–4.

    CAS  PubMed  Google Scholar 

  7. Rustin GJ, Galbraith SM, Anderson H, Stratford M, Folkes LK, Sena L, et al. Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J Clin Oncol. 2003;21:2815–22.

    Article  CAS  PubMed  Google Scholar 

  8. Young SL, Chaplin DJ. Combretastatin A4 phosphate: background and current clinical status. Expert Opin Investig Drugs. 2004;13:1171–82.

    Article  CAS  PubMed  Google Scholar 

  9. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279:377–80.

    Article  CAS  PubMed  Google Scholar 

  10. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715.

    Article  CAS  PubMed  Google Scholar 

  11. Mukhopadhyay S, Barnes CM, Haskel A, Short SM, Barnes KR, Lippard SJ. Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature. Bioconjug Chem. 2008;19:39–49.

    Article  CAS  PubMed  Google Scholar 

  12. Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl. 2004;43:6323–7.

    Article  CAS  PubMed  Google Scholar 

  13. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32:e149.

    Article  PubMed  Google Scholar 

  14. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  15. Allen C, Yu Y, Eisenberg A, Maysinger D. Cellular internalization of PCL(20)-b-PEO(44) block copolymer micelles. Biochim Biophys Acta. 1999;1421:32–8.

    Article  CAS  PubMed  Google Scholar 

  16. Mahmudand A, Lavasanifar A. The effect of block copolymer structure on the internalization of polymeric micelles by human breast cancer cells. Colloids Surf B Biointerfaces. 2005;45:82–9.

    Article  Google Scholar 

  17. Wang Y, Yu L, Han L, Sha X, Fang X. Difunctional Pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm. 2007;337:63–73.

    Article  CAS  PubMed  Google Scholar 

  18. Zeng F, Lee H, Allen C. Epidermal growth factor-conjugated poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. Bioconjug Chem. 2006;17:399–409.

    Article  CAS  PubMed  Google Scholar 

  19. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A. 2003;100:6039–44.

    Article  CAS  PubMed  Google Scholar 

  20. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52:2745–56.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Wang X, Zhang Y, Yang S, Wang J, Zhang X, et al. RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells. J Drug Target. 2009;17:459–67.

    Article  CAS  PubMed  Google Scholar 

  22. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109:169–88.

    Article  CAS  PubMed  Google Scholar 

  23. Xiong XB, Mahmud A, Uludag H, Lavasanifar A. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules. 2007;8:874–84.

    Article  CAS  PubMed  Google Scholar 

  24. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107–12.

    Article  CAS  PubMed  Google Scholar 

  25. Yang ZL, Li XR, Yang KW, Liu Y. Amphotericin B-loaded poly(ethylene glycol)-poly(lactide) micelles: preparation, freeze-drying, and in vitro release. J Biomed Mater Res A. 2008;85:539–46.

    PubMed  Google Scholar 

  26. Lavasanifar A, Samuel J, Kwon GS. The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly(ethylene oxide)-block-poly(N-hexyl stearate-L-aspartamide). J Control Release. 2002;79:165–72.

    Article  CAS  PubMed  Google Scholar 

  27. Giovine MD, Salone B, Martina Y, Amati V, Zambruno G, Cundari E, et al. Binding properties, cell delivery, and gene transfer of adenoviral penton base displaying bacteriophage. Virology. 2001;282:102–12.

    Article  PubMed  Google Scholar 

  28. Salone B, Martina Y, Piersanti S, Cundari E, Cherubini G, Franqueville L, et al. Integrin α3β1 is an alternative cellular receptor for adenovirus serotype 5. J Virol. 2003;77:13448–54.

    Article  CAS  PubMed  Google Scholar 

  29. Eliaz RE, Szoka Jr FC. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res. 2001;61:2592–601.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The National Basic Research Program of China (973 Program, 2009CB930300), the National Natural Science Foundation of China (30772666), the National High-tech R&D Program (863 Program, 2007AA021811) and the projects from the Ministry of Education are gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Additional information

Yiguang Wang and Tingyuan Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Yang, T., Wang, X. et al. Targeted Polymeric Micelle System for Delivery of Combretastatin A4 to Tumor Vasculature In Vitro . Pharm Res 27, 1861–1868 (2010). https://doi.org/10.1007/s11095-010-0184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0184-9

KEY WORDS

Navigation