Skip to main content

Advertisement

Log in

Evaluating the geothermal heat pump potential from a thermostratigraphic assessment of rock samples in the St. Lawrence Lowlands, Canada

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The installation cost and the performance of geothermal heat pump systems are influenced by the thermal state and properties of the subsurface. The ground ability to transfer heat described by thermal conductivity is a dominant factor affecting the favorability of closed-loop ground heat exchangers installed in vertical boreholes. A study that aimed at evaluating the geothermal heat pump potential by mapping the thermal conductivity of rock sequences was, therefore, performed for the St. Lawrence Lowlands sedimentary basin in Canada. Thermal conductivity was measured in the laboratory on rock samples collected in outcrops and used to complete design calculations of a geothermal system with a single borehole. Results allowed the definition of thermostratigraphic units that can be linked to depositional environments. Basal quartz-rich sandstones formed in a rift environment show a high geothermal potential. Overlying dolomites, argillaceous limestones and shales deposited in a passive margin evolving to a foreland basin exhibit a transition toward the top from high to low geothermal potential. Upper turbidites and molasses have a moderate geothermal potential. The thermal conductivity of the thermostratigraphic units is dominantly influenced by the mineralogy of the sedimentary rocks. Understanding their origin is a key to improve geothermal resource assessment and system design to anticipate new installations in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Khoury R, Bonnier PG (2006) Efficient finite element formulation for geothermal heating systems. Part II: transient. Int J Numer Methods Eng 67:725–745. doi:10.1002/nme.1662

    Article  Google Scholar 

  • Al-Khoury R, Bonnier PG, Brinkgreve RBJ (2005) Efficient finite element formulation for geothermal heating systems. Part I: steady state. Int J Numer Methods Eng 63:988–1013. doi:10.1002/nme.1313

    Article  Google Scholar 

  • Aretz A, Bär K, Götz AE, Sass I (2016) Outcrop analogue study of Permocarboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties. Int J Earth Sci 105:1431–1452. doi:10.1007/s00531-015-1263-2

    Article  Google Scholar 

  • ASTM International (2008) Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM International, West Conshohocken

    Google Scholar 

  • Bernier M (2000) A review of the cylindrical heat source method for the design and analysis of vertical ground-coupled heat pump systems. Proceedings of the fourth international conference on heat pumps in cold climates conference. Caneta Research Inc., Aylmer, pp 1–14

    Google Scholar 

  • Bernier M (2001) Ground-coupled heat pump system simulation. ASHRAE Trans 107:605–616

    Google Scholar 

  • Brisebois D, Brun J (1994) La plate-forme du Saint-Laurent et les Appalaches. In: Géologie du Québec, Ministère des ressources naturelles (ed), Gouvernement du Québec, Quebec City

  • Canadian GeoExchange Coalition (2012) The state of the Canadian geothermal heat pump industry 2011: industry survey and market analysis. Canadian GeoExchange Coalition, Montreal. http://www.geo-exchange.ca/en/UserAttachments/article81_Final%20Stats%20Report%202011%20-%20February%206,%202012_E.pdf

  • Carrier MA, Lefebvre R, Rivard C et al (2013) Portrait des ressources en eau souterraine en Montérégie Est, Québec, Canada. Institut national de la recherche scientifique—Centre Eau Terre Environnement, Quebec City. http://espace.inrs.ca/1639/1/R001433.pdf

  • Carslaw HS (1945) Introduction to the mathematical theory of the conduction of heat in solids. Dover, New York

    Google Scholar 

  • Casasso A, Sethi R (2016) G.POT: a quantitative method for the assessment and mapping of the shallow geothermal potential. Energy 106:765–773. doi:10.1016/j.energy.2016.03.091

    Article  Google Scholar 

  • Castonguay S, Lavoie D, Dietrich J, Laliberté JY (2010) Structure and petroleum plays of the St. Lawrence Platform and Appalachians in southern Quebec: insights from interpretation of MRNQ seismic reflection data. Bull Can Pet Geol 58:219–234. doi:10.2113/gscpgbull.58.3.219

    Article  Google Scholar 

  • Clauser C (2006) Geothermal energy. In: Heinloth K (ed) Landolt-Börnstein, Group VII: advanced materials and technologies, vol 3., Energy technologies, Subvol C., Renewable energiesSpringer, Heidelberg, pp 493–604

    Google Scholar 

  • Clauser C (2014a) Thermal storage and transport properties of rocks, I: heat capacity and latent heat. In: Gupta H (ed) Encyclopedia of solid earth geophysics. Springer, Netherlands, pp 1423–1431

    Google Scholar 

  • Clauser C (2014b) Thermal storage and transport properties of rocks, II: thermal conductivity and diffusivity. In: Gupta H (ed) Encyclopedia of solid earth geophysics. Springer, Netherlands, pp 1431–1448

    Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. American Geophysical Union, Washington DC, pp 105–126

    Chapter  Google Scholar 

  • Comeau FA, Bédard K, Malo M (2012) Lithostratigraphie standardisée du bassin des Basses-Terres du Saint-Laurent basée sur l’étude des diagraphies. Institut national de la recherche scientifique—Centre Eau Terre Environnement, Quebec City. http://espace.inrs.ca/1645/1/R001442.pdf

  • Crowell A, Gosnold W (2011) Correcting bottom-hole temperatures: a look at the Permian Basin (Texas), Anadarko and Arkoma Basins (Oklahoma), and Williston Basin (North Dakota). GRC Trans 35:735–738

    Google Scholar 

  • Crowell A, Klenner R, Gosnold W (2011) GIS analysis for the volumes, and available energy of selected reservoirs: Williston Basin, North Dakota. GRC Trans 35:1557–1562

    Google Scholar 

  • Cui P, Yang H, Spitler JD, Fang Z (2008) Simulation of hybrid ground-coupled heat pump with domestic hot water heating systems using HVACSIM+. Energy Build 40:1731–1736. doi:10.1016/j.enbuild.2008.03.001

    Article  Google Scholar 

  • De Filippis G, Margiotta S, Negri S, Giudici M (2015) The geothermal potential of the underground of the Salento peninsula (southern Italy). Environ Earth Sci 73:6733–6746. doi:10.1007/s12665-014-4011-1

    Article  Google Scholar 

  • Di Sipio E, Galgaro A, Destro E et al (2014) Subsurface thermal conductivity assessment in Calabria (southern Italy): a regional case study. Environ Earth Sci 72:1383–1401. doi:10.1007/s12665-014-3277-7

    Article  Google Scholar 

  • Galgaro A, Di Sipio E, Teza G, Destro E, De Carli M, Chiesa S, Zarrella A, Emmi G, Manzella A (2015) Empirical modeling of maps of geo-exchange potential for shallow geothermal energy at regional scale. Geothermics 57:173–184. doi:10.1016/j.geothermics.2015.06.017

    Article  Google Scholar 

  • Gehlin S, Nordell B (2003) Determining undisturbed ground temperature for thermal response test. ASHRAE Trans 109:151–156

    Google Scholar 

  • Globensky Y (1987) Géologie des Basses-Terres du Saint-Laurent. Ministère de l’Énergie et des Ressources du Québec, Quebec City

    Google Scholar 

  • Gosnold W, LeFever R, Mann M et al (2010) EGS potential in the northern midcontinent of North America. GRC Trans 34:355–358

    Google Scholar 

  • Gosnold WD, McDonald MR, Klenner R, Merriam D (2012) Thermostratigraphy of the Williston Basin. GRC Trans 36:663–670

    Google Scholar 

  • Hellström G (1991) Ground heat storage. Thermal analysis of duct storage systems. Ph.D. Thesis, Department of mathematical physics, University of Lund, Lund. http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=2536279&fileOId=8161230

  • Homuth S, Götz AE, Sass I (2015) Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool. Geotherm Energy Sci 3:41–49. doi:10.5194/gtes-3-41-2015

    Article  Google Scholar 

  • Ingersoll LR, Zobel OJ, Ingersoll AC (1954) Heat conduction, with engineering, geological, and other applications. McGraw-Hill, New York

    Google Scholar 

  • Lamarche L (2009) A fast algorithm for the hourly simulations of ground-source heat pumps using arbitrary response factors. Renew Energy 34:2252–2258. doi:10.1016/j.renene.2009.02.010

    Article  Google Scholar 

  • Lamarche L, Beauchamp B (2007a) New solutions for the short-time analysis of geothermal vertical boreholes. Int J Heat Mass Transf 50:1408–1419. doi:10.1016/j.ijheatmasstransfer.2006.09.007

    Article  Google Scholar 

  • Lamarche L, Beauchamp B (2007b) A new contribution to the finite line-source model for geothermal boreholes. Energy Build 39:188–198. doi:10.1016/j.enbuild.2006.06.003

    Article  Google Scholar 

  • Laroque M, Gagné S, Barnetche D et al (2015) Projet de connaissance des eaux souterraines du bassin versant de la zone Nicolet et de la partie basse de la zone Saint-François. Université du Québec à Montréal, Montreal. http://rqes-gries.ca/upload/files/Rapports/PACES-Phase-3/NSF/Rapport_NSF_Phase_III_Final_tailler%C3%A9duite_Partie1.pdf

  • Lavoie D (1994) Diachronous tectonic collapse of the Ordovician continental margin, eastern Canada: comparison between the Quebec reentrant and St. Lawrence Promontory. Can J Earth Sci 31:1309–1319. doi:10.1139/e94-113

    Article  Google Scholar 

  • Lee CK, Lam HN (2008) Computer simulation of borehole ground heat exchangers for geothermal heat pump systems. Renew Energy 33:1286–1296. doi:10.1016/j.renene.2007.07.006

    Article  Google Scholar 

  • Lenhardt N, Götz AE (2015) Geothermal reservoir potential of volcaniclastic settings: the Valley of Mexico, Central Mexico. Renew Energy 77:423–429. doi:10.1016/j.renene.2014.12.034

    Article  Google Scholar 

  • Li Z, Zheng M (2009) Development of a numerical model for the simulation of vertical U-tube ground heat exchangers. Appl Therm Eng 29:920–924. doi:10.1016/j.applthermaleng.2008.04.024

    Article  Google Scholar 

  • Li S, Dong K, Wang J, Zhang X (2015) Long term coupled simulation for ground source heat pump and underground heat exchangers. Energy Build 106:13–22. doi:10.1016/j.enbuild.2015.05.041

    Article  Google Scholar 

  • Majorowicz JA, Grasby SE, Skinner WC (2009) Estimation of shallow geothermal energy resource in Canada: heat gain and heat sink. Nat Resour Res 18:95–108. doi:10.1007/s11053-009-9090-4

    Article  Google Scholar 

  • Mielke P, Nehler M, Bignall G, Sass I (2015) Thermo-physical rock properties and the impact of advancing hydrothermal alteration—a case study from the Tauhara geothermal field, New Zealand. J Volcanol Geotherm Res 301:14–28. doi:10.1016/j.jvolgeores.2015.04.007

    Article  Google Scholar 

  • Nasr M, Raymond J, Malo M (2015) Évaluation en laboratoire des caractéristiques thermiques du bassin sédimentaire des Basses-Terres du Saint-Laurent. In: Proceedings of the 68th Canadian geotechnical conference and 7th Canadian permafrost conference, Québec City, pp 8

  • Ondreka J, Rüsgen MI, Stober I, Czurda K (2007) GIS-supported mapping of shallow geothermal potential of representative areas in south-western Germany—possibilities and limitations. Renew Energy 32:2186–2200. doi:10.1016/j.renene.2006.11.009

    Article  Google Scholar 

  • Philippe M, Bernier M, Marchio D (2009) Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes. Geothermics 38:407–413. doi:10.1016/j.geothermics.2009.07.002

    Article  Google Scholar 

  • Philippe M, Bernier M, Marchio D (2010) Sizing calculation spreadsheet: vertical geothermal borefields. ASHRAE J 52:20–28

    Google Scholar 

  • Rainieri S, Bozzoli F, Pagliarini G (2011) Modeling approaches applied to the thermal response test: a critical review of the literature. HVACR Res 17:977–990. doi:10.1080/10789669.2011.610282

    Google Scholar 

  • Raymond J, Therrien R, Gosselin L, Lefebvre R (2011) A review of thermal response test analysis using pumping test concepts. Ground Water 49:932–945. doi:10.1111/j.1745-6584.2010.00791x

    Article  Google Scholar 

  • Robert F, Gosselin L (2014) New methodology to design ground coupled heat pump systems based on total cost minimization. Appl Therm Eng 62:481–491. doi:10.1016/j.applthermaleng.2013.08.003

    Article  Google Scholar 

  • Santilano A, Manzella A, Donato A, Montanari D, Gola G, Di Sipio E, Destro E, Giaretta A, Galgaro A, Teza G, Viezzoli A, Menghini A (2015) Shallow geothermal exploration by means of SkyTEM electrical resistivity data: an application in Sicily (Italy). In: Lollino G, Manconi A, Clague J, Shan W, Chiarle M (eds) Engineering geology for society and territory, vol 1., Climate change and engineering geologySpringer, Cham, pp 363–367

    Google Scholar 

  • Sass I, Götz AE (2012) Geothermal reservoir characterization: a thermofacies concept. Terra Nova 24:142–147. doi:10.1111/j.1365-3121.2011.01048.x

    Article  Google Scholar 

  • Self SJ, Reddy BV, Rosen MA (2013) Geothermal heat pump systems: status review and comparison with other heating options. Appl Energy 101:341–348. doi:10.1016/j.apenergy.2012.01.048

    Article  Google Scholar 

  • Signorelli S, Kohl T (2004) Regional ground surface temperature mapping from meteorological data. Glob Planet Change 40:267–284. doi:10.1016/j.gloplacha.2003.08.003

    Article  Google Scholar 

  • Spitler JD, Gehlin SEA (2015) Thermal response testing for ground source heat pump systems—an historical review. Renew Sustain Energy Rev 50:1125–1137. doi:10.1016/j.rser.2015.05.061

    Article  Google Scholar 

  • Teza G, Galgaro A, Destro E, Di Sipio E (2015) Stratigraphy modeling and thermal conductivity computation in areas characterized by Quaternary sediments. Geothermics 57:145–156. doi:10.1016/j.geothermics.2015.06.016

    Article  Google Scholar 

  • Tran Ngoc TD, Lefebvre R, Konstantinovskaya E, Malo M (2014) Characterization of deep saline aquifers in the Bécancour area, St. Lawrence Lowlands, Québec, Canada: implications for CO2 geological storage. Environ Earth Sci 72:119–146. doi:10.1007/s12665-013-2941-7

    Article  Google Scholar 

  • Wang S, Liu X, Gates S (2015) An introduction of new features for conventional and hybrid GSHP simulations in eQUEST 3.7. Energy Build 105:368–376. doi:10.1016/j.enbuild.2015.07.041

    Article  Google Scholar 

  • Waples DW, Waples JS (2004a) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Nat Resour Res 13:97–122. doi:10.1023/B:NARR.0000032647.41046.e7

    Article  Google Scholar 

  • Waples DW, Waples JS (2004b) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 2: fluids and porous rocks. Nat Resour Res 13:123–130. doi:10.1023/B:NARR.0000032648.15016.49

    Article  Google Scholar 

  • Yang H, Cui P, Fang Z (2010) Vertical-borehole ground-coupled heat pumps: a review of models and systems. Appl Energy 87:16–27. doi:10.1016/j.apenergy.2009.04.038

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Raymond.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raymond, J., Sirois, C., Nasr, M. et al. Evaluating the geothermal heat pump potential from a thermostratigraphic assessment of rock samples in the St. Lawrence Lowlands, Canada. Environ Earth Sci 76, 83 (2017). https://doi.org/10.1007/s12665-017-6398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6398-y

Keywords

Navigation