Skip to main content
Log in

Outcrop analogue study of Permocarboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Permocarboniferous siliciclastic formations represent the largest hydrothermal reservoir in the northern Upper Rhine Graben in SW Germany and have so far been investigated in large-scale studies only. The Cenozoic Upper Rhine Graben crosses the Permocarboniferous Saar–Nahe Basin, a Variscan intramontane molasse basin. Due to the subsidence in this graben structure, the top of the up to 2-km-thick Permocarboniferous is located at a depth of 600–2900 m and is overlain by Tertiary and Quaternary sediments. At this depth, the reservoir temperatures exceed 150 °C, which are sufficient for geothermal electricity generation with binary power plants. To further assess the potential of this geothermal reservoir, detailed information on thermophysical and hydraulic properties of the different lithostratigraphical units and their depositional environment is essential. Here, we present an integrated study of outcrop analogues and drill core material. In total, 850 outcrop samples were analyzed, measuring porosity, permeability, thermal conductivity and thermal diffusivity. Furthermore, 62 plugs were taken from drillings that encountered or intersected the Permocarboniferous at depths between 1800 and 2900 m. Petrographic analysis of 155 thin sections of outcrop samples and samples taken from reservoir depth was conducted to quantify the mineral composition, sorting and rounding of grains and the kind of cementation. Its influence on porosity, permeability, the degree of compaction and illitization was quantified. Three parameters influencing the reservoir properties of the Permocarboniferous were detected. The strongest and most destructive influence on reservoir quality is related to late diagenetic processes. An illitic and kaolinitic cementation and impregnation of bitumina document CO2- and CH4-rich acidic pore water conditions, which are interpreted as fluids that migrated along a hydraulic contact from an underlying Carboniferous hydrocarbon source rock. Migrating oil and acidic waters led to the dissolution of haematite cements in the lower Permocarboniferous formations. During the Eocene, subsidence of the Upper Rhine Graben porosities and permeabilities of the sandstones of these formations were strongly reduced to 2.5 % and 3.2 × 10−18 m2. The second important influence on reservoir quality is the distinct depositional environment and its influence on early diagenetic processes. In early stage diagenesis, the best influence on reservoir properties exhibits a haematite cementation. It typically occurs in eolian sandstones of the Kreuznach Formation (Upper Permocarboniferous) and is characterized by grain covering haematite coatings, which are interpreted to inhibit cementation, compaction and illitization of pore space during burial. Eolian sandstones taken from outcrops and reservoir depths exhibit the highest porosities (16.4; 12.3 %) and permeabilities (2.0 × 10−15; 8.4 × 10−16 m2). A third important influence on reservoir quality is the general mineral composition and the quartz content which is the highest in the Kreuznach Formation with 73.8 %. Based on the integrated study of depositional environments and diagenetic processes, reservoir properties of the different Permocarboniferous formations within the northern Upper Rhine Graben and their changes with burial depth can be predicted with satisfactory accuracy. This leads to a better understanding of the reservoir quality and enables an appropriate well design for exploration and exploitation of these geothermal resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdulagatova Z, Abdulagatov IM, Emirov VN (2009) Effect of temperature and pressure on the thermal conductivity of sandstone. Int J Rock Mech Min Sci 46:1055–1071

    Article  Google Scholar 

  • Agemar T, Schellschmidt R, Schulz R (2012) Subsurface temperature distribution in Germany. Geothermics 44:65–77

    Article  Google Scholar 

  • Agemar T, Brunken J, Jodocy M, Schellschmidt R, Schulz R, Stober I (2013) Untergrundtemperaturen in Baden-Württemberg. Z Dt Ges Geowiss 164(1):49–62

    Google Scholar 

  • Alsop DB, Al Ghammari M, Al Abri A, Al Mahrooqi A, Al Rahwhi H, Salem H (2013) Reservoir architecture of the Gharif Formation outcrops in the Southern Huqf area, Sulanate of Oman. Geol Soc Lond Spec Publ 387:111–133

    Article  Google Scholar 

  • Anderle HJ (1987) The evolution of the South Hunsrück and Taunus Borderzone. Tectonophysics 137:101–114

    Article  Google Scholar 

  • Aretz A, Bär K, Sass I (2013) Charakterisierung des geothermischen Reservoirpotenzials des Permokarbons in Hessen und Rheinland-Pfalz—thermophysikalische und hydraulische Gesteinskennwerte. Swiss Bull Angew Geol 18(1):33–41

    Google Scholar 

  • Arndt D, Bär K, Fritsche J-G, Kracht M, Sass I, Hoppe A (2011) 3D structural model of the Federal State of Hesse (Germany) for geo-potential evaluation. Z dt Ges Geowiss 162(4):353–370

    Google Scholar 

  • Bär K (2008) 3D-Modellierung des tiefengeothermischen Potenzials des nördlichen Oberrheingrabens und Untersuchung der geothermischen Eigenschaften des Rotliegend. Diploma Thesis, Technische Universität Darmstadt

  • Bär K (2012) Untersuchung der tiefengeothermischen Potenziale von Hessen. Dissertation, Technische Universität Darmstadt

  • Bär K, Arndt D, Fritsche J-G, Götz AE, Kracht M, Hoppe A, Sass I (2011) 3D-Modellierung der tiefengeothermischen Potenziale von Hessen—Eingangsdaten und Potenzialausweisung. Z dt Ges Geowiss 162(4):371–388

    Google Scholar 

  • Barcley SA, Worden RH (2000) Geochemical modeling of diagenetic reactions in subarkosic sandstone. Clay Miner 35:57–67

    Article  Google Scholar 

  • Barth G, Franz M, Heunisch C, Kustatscher R, Thies D, Vespermann J, Wolframm M (2014) Later Triassic (Norian–Rhaetian) brackish to fresh water habitats at a fluvial-dominated delta plain (Seinstedt, Lower Saxony, Germany). Palaeobiodivers Palaeoenviron 94:495–528

    Article  Google Scholar 

  • Bauer JF, Meier S, Philipp SL (2015) Architecture, fracture system, mechanical properties and permeability structure of a fault zone in Lower Triassic sandstone, Upper Rhine Graben. Tectonophysics 647–648:132–145

    Article  Google Scholar 

  • Becker A, Schwarz M, Schäfer A (2012) Lithostratigraphische Korrelation des Rotliegend im östlichen Saar-Nahe-Becken. Jber Mitt Oberrhein Geol Ver 94:105–133

    Google Scholar 

  • Behrmann JH, Ziegler PA, Schmid SM, Heck B, Granet M (eds) (2005) EUCOR-URGENT Upper Rhine Graben evolution and neotectonics. Int J Earth Sci (Geol Rdsch) 94:505–506

  • Beitler B, Chan MA, Parry WT (2003) Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: evidence of exhumed hydrocarbon supergiants? Geology 31(12):1041–1044

    Article  Google Scholar 

  • Beyer D, Kunkel C, Aehnelt M, Pudlo D, Voigt T, Nover G, Gaupp R (2014) Influence of depositional environment and diagenesis on petrophysical properties of clastic sediments (Buntsantstein of the Thuringian Syncline, Central Germany). Z dt Ges Geowiss 186(3):345–365

    Google Scholar 

  • Bitzer F (2007) Ergebnisse von Durchlässigkeitsuntersuchungen an permotriassischen Gesteinen der Pfälzer Mulde. Mainzer geowiss Mitt 35:17–32

    Google Scholar 

  • Bjørlykke K (1996) Clay mineral diagenesis in sedimentary basins—a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Miner 33:15–34

    Article  Google Scholar 

  • Bjørlykke K (2010) Introduction to sedimentology: sediment transport und sedimentary environments. In: Bjørlykke K (ed) Petroleum geoscience. Springer, Berlin

    Chapter  Google Scholar 

  • Boy JA (2005) Geologie von Rheinland-Pfalz. Schweizerbartsche, Stuttgart

    Google Scholar 

  • Buckley S, Howell JA, Enge H, Tobias K (2008) Terrestrial laser scanning in geology: data acquisition, processing and accuracy consideration. J Geol Soc 165:625–638

    Article  Google Scholar 

  • Buntebarth G (1989) Geothermie—Eine Einführung in die allgemeine und angewandte Wärmelehre des Erdkörpers. Springer, Berlin

    Google Scholar 

  • Chan MA, Parry WT, Bowman JR (2000) Diagenetic Hematite and Manganese Oxides and Fault-Related Fluid Flow in Jurassic Sandstones, Southeastern Utah. AAPG Bull 84(9):1281–1310

    Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. Rock physics and phase relations, a handbook of physical constants. AGU Ref Shelf 3:105–126

    Article  Google Scholar 

  • Clauser C, Villinger H (1990) Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben. Geophys J Int 100:393–414

    Article  Google Scholar 

  • Clemmensen LB (1987) Complex star dunes and associated aeolian bedforms, Hopeman Sandstone (Permo-Triassic), Moray Fifth Basin, Scotland. Geol Soc Lond Spec Publ 35:213–231

    Article  Google Scholar 

  • Cookenboo HO, Bustin RM (1999) Pore water evolution in sandstones of the Groundhog Coalfield, northern Bower Basin, British Columbia. Sediment Geol 123:129–146

    Article  Google Scholar 

  • Deutsche Gesellschaft für Geotechnik e.V./Deutsche Gesellschaft für Geowissenschaften e.V. (eds) Empfehlung Oberflächennahe Geothermie—Planung, Bau, Betrieb und Überwachung—EA Geothermie. Ernst und Sohn, Berlin

  • Dreyer T (1990) Sand body dimensions and infill sequences of stable, humid-climate delta plain channels. North Sea Oil Gas Reservoirs—II, pp 337–351

  • Dreyer T (1993) Quantified fluvial architecture in ephemeral stream deposits of the Esplugafreda Formation (Palaeocene), Tremp-Graus Basin, northern Spain. In Marzo M, Puigdefàbregas C (eds) Alluvial sedimentation, vol 17. International Association of Sedimentologists, Special Publications, pp 337–362

  • Ehrenberg SN (1993) Preservation of anomalously high porosity in deeply buried sandstones by grain coating chlorite: examples from the Norwegian Continental Shelf. AAPG Bull 77:1260–1286

    Google Scholar 

  • Emery D, Smalley PC, Oxtoby NH (1993) Synchronous oil migration and cementation in sandstone reservoir demonstrated by quantitative description of diagenesis. Philos Trans R Soc Lond A 344:125–135

    Article  Google Scholar 

  • Enge HD, Buckley SJ, Rotevatn A, Howell JA (2007) From outcrop to reservoir simulation model: workflow and procedures. Geosphere 3:469–490

    Article  Google Scholar 

  • Eschard R, Deschamps R, Doligez B, Lerat O (2013) Connectivity estimation between turbiditic channels and overbank deposits from the modelling of an outcrop analogue (Pab Formation, Maastrichitan, Pakistan). Geol Soc Lond Spec Publ 387(1):203–231

    Article  Google Scholar 

  • Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks and implications for hydraulic structure of fault zones. J Struct Geol 19:1393–1404

    Article  Google Scholar 

  • Fielding CR, Crane RC (1987) An application of statistical modeling to the prediction of hydrocarbon recovery factors in fluvial reservoir sequences. Recent Dev Fluviatil Sedimentol 39:321–327

    Article  Google Scholar 

  • Filomena CM, Hornung J, Stollhofen H (2014) Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices. Solid Earth 5(1):1–11

    Article  Google Scholar 

  • Foxford KA, Garden IR, Guscott SC, Burley SD, Lewis JJM, Walsh JJ, Watterson J (1996) The field geology of the Moab Fault. In: Huffman AC, Lund WR, Godwin LH (eds) Geology and resources of the Paradox Basin, Utah Geol. Assoc. Guidebook 25:256–283

  • Fuchs S, Schütz F, Förster HJ, Förster A (2013) Evaluation of mathematical models for predicting thermal conductivity of sedimentary rocks. Correction charts and new conversion equations. Geothermics 47:40–52

    Article  Google Scholar 

  • Füchtbauer H (1988) Sedimente und Sedimentgesteine. Schweizerbart, Stuttgart

    Google Scholar 

  • Garden IR, Guscott SC, Burley SD, Foxford KA, Walsh JJ, Marshall J (2001) An exhumed palaeo-hydrocarbon migration fairway in a faulted carrier system, Entrada Sandstone of SE Utah, USA. Geofluids 1:195–213

    Article  Google Scholar 

  • Gaupp R (1996) Diagenesis types and their application in diagenesis mapping. Zbl Geol Paläont Teil 1(11/12):1183–1199

  • Gaupp R, Matter A, Platt J, Ramseyer K, Walzebuck J (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegend) Gas Reservoirs, Northwest Germany. AAPG Bull 77(7):1111–1128

    Google Scholar 

  • GeORG-Projektteam (2013) Geopotenziale des tieferen Untergrundes im Oberrheingraben, Fachlich-Technischer Abschlussbericht des Interreg-Projekts GeORG, Teil 2: Geologische Ergebnisse und Nutzungsmöglichkeiten

  • Gibling MR (2006) Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification. J Sediment Res 76:731–770

    Article  Google Scholar 

  • Grötsch J, Gaupp R (2011) Foreword by the editors. In: Grötsch J, Gaupp R (eds) The Permian Rotliegend of the Netherlands. SEPM Spec Publ 98:3–6

  • Haenel R, Staroste E (1988/2002) Atlas of Geothermal Resources in the European Community, Austria and Switzerland. Publ. No. EUR 11026 and 17811 of the European Commission Office of Official Publications of the European Communities, Luxemburg

  • Hartmann A, Rath V, Clauser C (2005) Thermal conductivity from core and well log data. Int J Rock Mech Min Sci 42:1042–1055

    Article  Google Scholar 

  • Hasner K (2004) Untersuchungen an Hämatit-Tonmineralkrusten in Rotliegendsandsteinen des Norddeutschen Beckens. Diploma Thesis, Friedrich-Schiller-Universität Jena

  • Henk A (1992) Mächtigkeit und Alter der erodierten Sedimente im Saar-Nahe-Becken (SW-Deutschland). Geol Rundsch 81(2):323–331

    Article  Google Scholar 

  • Henk A (1993a) Subsidenz und Tektonik des Saar-Nahe-Beckens (SW-Deutschland). Geol Rundsch 82:3–19

    Article  Google Scholar 

  • Henk A (1993b) Late orogenic basin evolution in the Variscan Internides: the Saar-Nahe Basin, southwest Germany. Tectonophysics 223:273–290

    Article  Google Scholar 

  • Hertle M (2003) Numerische Simulation der geologischen Entwicklungsgeschichte des permokarbonen Saar-Nahe-Beckens. Dissertation, RWTH Aachen

  • Hodgetts D (2013) Laser scanning and digital outcrop geology in the petroleum industry: a review. Mar Pet Geol 46:335–354

    Article  Google Scholar 

  • Homuth S, Götz AE, Sass I (2014) Lithofacies and depth dependency of thermo- and petrophysical rock parameters of the Upper Jurassic geothermal carbonate reservoirs of the Molasse Basin. Z dt Ges Geowiss 165:469–486

    Google Scholar 

  • Houseknecht DW (1987) Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones. AAPG Bull 71(6):633–642

    Google Scholar 

  • Houseknecht DW (1988) Intergranular pressure solution in four quartzose sandstones. J Sediment Petrol 58:228–246

    Google Scholar 

  • Howell JA, Allard WM, Good TR (2014) The application of outcrop analogues in geological modeling: a review, present status and future outlook. Geol Soc Lond Spec Publ 387:1–25

    Article  Google Scholar 

  • Hurter S, Schellschmidt R (2003) Atlas of geothermal resources in Europe. Geothermics 32(4–6):779–787

    Article  Google Scholar 

  • Illies JH (1972) The Rhine graben rift system—plate tectonics and transform faulting. Geophys Surv 1:27–60

    Article  Google Scholar 

  • Jahn F, Graham M, Cook M (2008) Hydrocarbon exploration & production. Elsevier, Aberdeen

    Google Scholar 

  • Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. Drill Prod Pract API:200–213

  • Koegh KJ, Leary S, Martinius AW, Scott ASJ, Riordan S, Voste I, Gowland S, Taylor AM, Howell J (2014) Data capture for multiscaling modeling of the Lourinha Formation, Lusitanian Basin, Portugal: an outcrop analogue for the Stratfjord Group and future directions. Geol Soc Lond Spec Publ 387:27–56

    Article  Google Scholar 

  • Kowalczyk G (2001) Permokarbon des Sprendlinger Horstes und der westlichen Wetterau (Exkursion I am 20. April 2001). Jber Mitt Oberrhein geol Ver 83:211–236

    Google Scholar 

  • Littke R, Brauckmann FJ, Radke M, Schaefer RG (1996) Solid bitumen in Rotliegend gas reservoirs in Northern Germany: implications for their thermal and filling history. Zbl Geol Paläont 1(11/12):1275–1291

    Google Scholar 

  • Lockner DA, Naka H, Tanaka H, Ito H, Ikeda R (2000) Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake. In: GSJ Internal Report No. EQ/00/1, Proceedings of the internal workshop on Nojima Fault Core and borehole date analysis, pp 147–157

  • Lorenz V (1976) Formation of Hercynian subplates, possible causes and consequences. Nature 262:374–377

    Article  Google Scholar 

  • Lützner H, Kowalczyk G (2012) Stratigraphie von Deutschland X, Rotliegend, Teil 1: Inner-variscische Becken. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, vol 61, Hannover

  • Marell D (1989) Das Rotliegende zwischen Odenwald und Taunus. Geol Abh Hessen 89

  • McCann T (1998) Sandstone and provenance of the Rotliegend of the NE German Basin. Sediment Geol 116:177–198

    Article  Google Scholar 

  • McCann T (2008) The geology of Central Europe: Precambrian and Palaeozoic. Geological Society, London

    Google Scholar 

  • Meier S, Bauer JF, Philipp SL (2015) Fault zone characteristics, fracture systems and permeability implications of Middle Triassic Muschelkalk in Southwest Germany. J Struct Geol 70:170–189

    Article  Google Scholar 

  • Miall AD (1996) The geology of fluvial deposits. Springer, Berlin, Heidelberg

    Google Scholar 

  • Molenaar N (1998) A review of effects of diagenesis on petrophysical properties and reservoir quality and the controls on diagenesis. Nordic Pet Technol Ser 5:155–170

    Google Scholar 

  • Molenaar N, Felder M, Bär K, Götz AE (2015) What classic greywacke (litharenite) can reveal about feldspar diagenesis: an example from Permian Rotliegend sandstone in Hessen, Germany. Sediment Geol 326:79–93

    Article  Google Scholar 

  • Morad S (1998) Carbonate cementation in sandstones: distribution patterns and geochemical evolution. IAS Spec Publ 26:1–26

    Google Scholar 

  • Mountney N, Howell JA, Flint SS, Jerram V (1999) Relating eolian bounding-surface geometries to the bed forms that generated them: Etjo Formation, Cretaceous, Namibia. Geology 27:159–162

    Article  Google Scholar 

  • Müller H (1996) Das Permokarbon im nördlichen Oberrheingraben—Paläogeographische und strukturelle Entwicklung des permokarbonen Saar-Nahe-Beckens im nördlichen Oberrheingraben. Geol Abh Hessen 99

  • Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and its consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rdsch 86:2–20

    Article  Google Scholar 

  • Pape HG, Clauser C, Iffland J (1999) Permeability prediction based on fractal pore space geometry. Geophysics 64(5):1447–1460

    Article  Google Scholar 

  • Parry WT, Chan MA, Beitler B (2004) Chemical bleaching indicates episodes of fluid flow in deformation bands in sandstone. AAPG Bull 88(2):175–191

    Article  Google Scholar 

  • Paxton ST, Szabo JO, Ajdukiewicz JM, Klimentidis RE (2002) Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs. AAPG Bull 86:2047–2067

    Google Scholar 

  • Perry EA, Hower J (1972) Late-stage dehydration in deeply buried pelitic sediments. AAPG Bull 56:2013–2021

    Google Scholar 

  • Pettijohn FJ (1975) Sedimentary rocks. Harper and Row, New York

    Google Scholar 

  • Plein E (1993) Voraussetzungen und Grenzen der Bildung von Kohlenwasserstoff-Lagerstätten im Oberrheingraben. Jber Mitt Oberrhein Geol Ver NF 75:227–253

    Google Scholar 

  • Popov YA, Pribnow DFC, Sass JH, Williams, CF, Burkhardt H (1999) Complex detailed Investigations of the thermal properties of rocks on the basis of a moving point source. Earth Phys 21(1):64–70

    Google Scholar 

  • Popov YA, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure Appl Geophys 160:1137–1161

    Article  Google Scholar 

  • Pranter MJ, Hewlett AC, Cole RD, Wang H, Gilman J (2013) Fluvial architecture and connectivity of the Williams Form Formation: use of outcrop analogues for stratigraphic characterization and reservoir modeling. Geol Soc Lond Spec Publ 387:57–83

    Article  Google Scholar 

  • Pribnow D, Schellschmidt R (2000) Thermal tracking of upper crustal fluid flow in the Rhine Graben. Geophys Res Lett 27(13):1957–1960

    Article  Google Scholar 

  • Rawling GC, Goodwin LB, Wilson JL (2001) Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types. Geology 29(1):43–46

    Article  Google Scholar 

  • Reading HG (1996) Sedimentary environments—processes, facies and stratigraphy. Blackwell Science Inc, Malden

    Google Scholar 

  • Reyer D (2013) Outcrop Analogue Studies of Rocks from the Northwest German Basin for Geothermal Exploration and Exploitation: Fault Zone Structure, Heterogeneous Rock Properties and Application to Reservoir conditions. Dissertation, Georg-August-Universität Göttingen

  • Rohrer L (2010) Seismische Interpretation und Aufschluss-Analogstudie des Rotliegend im nördlichen Oberrheingraben und im Saar-Nahe-Becken. Diploma thesis, Universität Heidelberg

  • Rossi C, Kälin O, Aaribas J, Tortusa A (2002) Diagenesis, provenance and reservoir quality of Triassic TAGI sandstones from Ourhood field, Berkine (Ghadames) Basin, Algeria. Mar Pet Geol 19:117–142

    Article  Google Scholar 

  • Sass I, Götz AE (2012) Geothermal reservoir characterization: a thermofacies concept. Terra Nova 24:142–147

    Article  Google Scholar 

  • Sass I, Hoppe A (2011) Forschungs- und Entwicklungsprojekt „3D-Modell der geothermischen Tiefenpotenziale von Hessen” Abschlussbericht. http://www.energieland.hessen.de/mm/3-D-Modell-Hessen-Endbericht_(PDF,_7.300_KB).pdf. Dec 2013

  • Schäfer A (1980) Sedimenttransport im Permokarbon des Saar-Nahe-Beckens (Oberkarbon und Unterrotliegendes)—Konsequenz für die Entwicklung des Ablagerungsraumes. Z Dt Geol Ges 131:815–841

    Google Scholar 

  • Schäfer A (1986) Die Sedimente des Oberkarbons und Unterrotliegenden im Saar-Nahe-Becken. Mainz Geowiss Mitt 15:239–365

    Google Scholar 

  • Schäfer A (1989) Variscan molasse in the Saar-Nahe Basin (W-Germany), Upper Carboniferous and Lower Permian. Geol Rdsch 78:499–524

    Article  Google Scholar 

  • Schäfer A (2005) Sedimentologisch-numerisch begründeter Stratigraphischer Standard für das Permo-Karbon des Saar-Nahe-Beckens. Cour Forsch-Inst Senckenberg 254:369–394

    Google Scholar 

  • Schäfer A (2011) Tectonics and sedimentation in the continental strike-slip Saar-Nahe Basin (Carboniferous-Permian, West Germany). Z dt Ges Geowiss 162(2):127–155

    Google Scholar 

  • Schmidt RB, Seithel R, Bucher K, Stober I (2015) Fluid-rock interaction in deep fault systems and the influence on permeability in typical rocks of the Upper Rhine Graben, southwest Germany. In: Proceedings world geothermal congress 2015, Melbourne, Australia

  • Schöner R (2006) Comparison of Rotliegend sandstone diagenesis from the northern and southern margin of the North German Basin, and implications for the importance of organic maturation and migration. Dissertation, Friedrich-Schiller-University Jena

  • Schulz R, Knopf S, Suchi E, Dittmann J (2013) Geothermieatlas zur Darstellung möglicher Nutzungskonkurrenzen zwischen CCS und Tiefer Geothermie. Leibniz-Institut für Angewandte Geophysik und Bundesanstalt für Geowissenschaften und Rohstoffe

  • Schwarz M, Becker A, Schäfer A (2011) Seismische Leithorizonte im nordöstlichen Saar-Nahe-Becken. Erdöl Erdgas Kohle 127:28–34

    Google Scholar 

  • Stapf KRG (1982) Schwemmfächer- und Playa-Sedimente im Ober-Rotliegenden des Saar-Nahe-Beckens (Permokarbon, SW-Deutschland). Ein Überblick über Faziesanalyse und Faziesmodell. Mitteilungen über Pollichia 70:7–54

    Google Scholar 

  • Stober I, Bucher K (2007) Hydraulic properties of the crystalline basement. Hydrogeol J 15:213–224

    Article  Google Scholar 

  • Stober I, Jodocy M (2009) Eigenschaften geothermischer Nutzhorizonte im baden-württembergischen und französischen Teil des Oberrheingrabens. Grundwasser 14:127–137

    Article  Google Scholar 

  • Stollhofen H (1994) Synvulkanische Sedimentaton in einem fluviatilen Ablagerungsraum: Das basale „Oberrotliegend“im permokarbonen Saar-Nahe-Becken. Z dt Geol Ges. 145:343–378

    Google Scholar 

  • Stollhofen H (1998) Facies architecture variations and seismogenic structures in the Carboniferous–Permian Saar–Nahe Basin (SW Germany): evidence for extension-related transfer fault activity. Sediment Geol 119:47–83

    Article  Google Scholar 

  • Surdam RC, Boese SW, Crossey LJ (1984) The chemistry of secondary porosity. In: McDonald DA, Surdam RC (eds) Clastic diagenesis. AAPG Memoir 37:127–149

  • Teichmüller M, Teichmüller R (1979) Zur geothermischen Geschichte des Oberrheingrabens. Zusammenfassung und Auswertung eines Symposiums. Fortschr Geol von Rheinld u Westf 2:109–120

    Google Scholar 

  • van Houten FB (1973) Origin of red beds. A review—1961–1972. Ann Rev Earth Planet Sci 1:39–61

    Article  Google Scholar 

  • Velde B (1995) Origin and mineralogy of clays. Springer, Berlin

    Book  Google Scholar 

  • Walter R, Dorn P (2007) Geologie von Mitteleuropa. Schweizerbart, Stuttgart

    Google Scholar 

  • Wenke A, Gall W, Gutekunst S, Kreuter H, Rohrer L, Zühlke R. (2009) Tiefe Geothermie im Raum Groß-Gerau—Erkenntnisse einer ersten Reconnaissance Studie. In: Proceedings—Der Geothermiekongress 2009, Technikforum 8—Exploration III, Bochum, 17.–19.11.2009

  • Wenke A, Spath F, Aichinger J, Bißmann S, Grobe R, Kreuter H, Lorson C, Rohrer L, Rothert E, Schrage C, Zöllner E, Zühlke R (2011) Geologische Erkenntnisse und neuere Entwicklungen im Erlaubnisfeld Groß-Gerau. Präsentation 6. Hessisches Tiefengeothermieforum

  • Wolfgramm M (2005) Fluidentwicklung und Diagenese im Nordostdeutschen Becken—Petrographie, Mikrothermometrie und Geochemie stabiler Isotope. Dissertation, Martin-Luther-Universität Halle-Wittenberg

  • Worden RH, Barcley SA (2000) Internally-sourced quartz cement due to externally-derived CO2 in sub-arkosic sandstones, North Sea. J Geochem Explor 69–70:645–649

    Article  Google Scholar 

  • Worden RH, Morad S (2000) Quartz cementation in oil field sandstones: a review of the key controversies. Spec Publ Int Ass Sediment 29:1–20

    Google Scholar 

  • Worden RH, Morad S (2003) Clay Mineral Cements in Sandstones. IAS Spec Publ 34:1–520

    Google Scholar 

  • Worden RH, Mayall MJ, Evans IJ (1997) Predicting reservoir quality during exploration: lithic grains, porosity and permeability in Tertiary clastics of the South China Sea basin. Geol Soc Lond Spec Publ 126:107–115

    Article  Google Scholar 

  • Ziegler PA (1990) Geological atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij, London

    Google Scholar 

Download references

Acknowledgments

We gratefully thank the Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMU) for funding this research project, Grant No. 0325286. The Wirtschaftsverband Erdöl- und Erdgasgewinnung e.V. (WEG) is kindly acknowledged for the collaboration agreement for data exchange. ExxonMobil permitted access to its archive of drill cores and sampling, and Wintershall Holding GmbH provided access to drill core data. Our thanks go to the Geological Survey of the State of Hesse (Hessisches Landesamt für Umwelt und Geologie), the Senckenberg Research Institute (Research Station Messel Pit), and the Kreuznacher Stadtwerke for giving permission to sample drill cores. We kindly acknowledge the very constructive reviews of Nicolaas Molenaar and Markus Wolfgramm, which helped to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Aretz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aretz, A., Bär, K., Götz, A.E. et al. Outcrop analogue study of Permocarboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties. Int J Earth Sci (Geol Rundsch) 105, 1431–1452 (2016). https://doi.org/10.1007/s00531-015-1263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1263-2

Keywords

Navigation