Skip to main content
Log in

Preliminary study on dinosaur rib microstructure by applying correlative microscopy techniques

  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

A dorsal rib portion from the post-cranial skeleton of a small ornithischian dinosaur discovered from the fossiliferous locality in Boseong was analyzed through Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Electron Probe Microanalyser (EPMA), X-ray Diffraction (XRD), and Transmission Electron Microscopy (TEM) to determine the detailed microstructure and components of the fossilized dinosaur bone. The rib bone portion was specifically chosen as an initial research sample to establish efficient experimental methodology in order to apply to future dinosaur osteohistological study. Since the fossilized bone was highly compressed by the surrounding matrix, distinct features of bone tissues were not clearly visible in OM cross sections. Instead, we observed two other features: (1) numerous patches of calcite crystals in various orientations filling the void region; (2) apatite crystals of 10∼200 nm size constituting the bone matrix region, which is revealed by XRD, EPMA, SEM, and TEM. The data we have obtained so far is preliminary to directly elucidate the specific microstructural properties of fossilized bone such as bone formation and growth patterns, but we have provided possibility of revealing the characteristic features of dinosaur bone microstructure in nano-scale and established efficient specimen preparation methods for correlative Optical Microscopy (OM)-Electron Microscopy (EM) study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barreto, C., Heintz, J., Horner, J., and Albrecht, R., 2007, Original biomaterials preserved in dinosaur bone. Microscopy and Microanalysis, 13(Supplement 2), 52–53.

    Google Scholar 

  • Biltz, R.M. and Pellegrino, E.D., 1969, The chemical anatomy of bone: I. A comparative study of bone composition in sixteen vertebrates. The Journal of Bone and Joint Surgery, 51, 456–466.

    Google Scholar 

  • Chinsamy, A., 2005, The Microstructure of Dinosaur Bone — Deciphering Biology with Fine-Scale Techniques. John Hopkins Press, Baltimore, 40 p.

    Google Scholar 

  • Dumont, M., Zoeger, N., Streli, C., Wobrauschek, P., Falkenberg, G., Sander, P.M., and Pyzalla, A.R., 2009, Synchrotron XRF analyses of element distribution in fossilized sauropod dinosaur bones. Joint Committee on Powder Diffraction Standards, 24, 130–134.

    Article  Google Scholar 

  • Egerton, R.F. and Malac, P.Li.M., 2004, Radiation damage in the TEM and SEM. Micron, 35, 399–419.

    Article  Google Scholar 

  • Erickson, G.M., 2005, Assessing dinosaur growth patterns: a microscopic revolution. Trends in Ecology and Evolution, 20, 677–684.

    Article  Google Scholar 

  • Erickson, G.M., Rauhut, O.W.M., Zhou, Z., Turner, A.H., Inouye, B.D., Hu, D., and Norell, M.A., 2009, Was dinosaurian physi ology inherited by birds? Reconciling slow growth in Archaepteryx, PLoS One, 4, 1–9.

    Article  Google Scholar 

  • Glimcher, M.J., 2006, Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. In: Sahai N. and Schoonen M.A.A. (eds.), Medical Mineralogy and Geochemistry. Reviews in Mineralogy & Geochemistry, Vol. 64, p. 223–282.

  • Goodwin, M.B., Grant, P.G., Bench, G., and Holroyd, P.A., 2007, Elemental composition and diagenetic alteration of dinosaur bone: Distinguishing micron-scale spatial and compositional heterogeneity using PIXE. Paleogeography, Paleoclimatology, Paleoecology, 253, 458–476.

    Article  Google Scholar 

  • Hong, S.I., Hong, S.K., and Kohn D.H., 2009, Nanostructural analysis of trabecular bone. Journal of Materials Science-Materials in Medicine, 20, 1419–1426.

    Article  Google Scholar 

  • Huh, M., Lee, D-G., Kim, J-K., Lim, J-D., and Godefroit, P., 2011, A new basal ornithopod dinosaur from the Upper Cretaceous of South Korea. Neues Jahrbuch f″ur Geologie und Pal″aontologie, Abhandlungen, 259, 1–24.

    Google Scholar 

  • Huh, M., Paik, I-S., Park, J., Hwang, K-G., Lee, Y-I., Yang, S-Y, Lim, J-D., Lee, Y-U., Cheong, D-K., Seo, S-J., Park, K-H., and Moon, K-H. 2006, Occurrence of dinosaur eggs in South Korea. Journal of the Geological Society of Korea, 42, 523–547.

    Google Scholar 

  • Hwang, I.J. and Cheong, C.S., 1968, Explanatory Text of the Geological Map of Boseong Sheet (1:50 000). Geological Survey of Korea, Seoul, 9 p.

    Google Scholar 

  • Kim, C-B., Kim, J-M., and Huh, M., 2008, Age and stratification of dinosaur eggs and cluches from Seonso Formation, South Korea. The Journal of the Korean Earth Science Society, 29, 386–395.

    Article  Google Scholar 

  • Kim, J-G., Choi, J-H., Jeong, J-M., Kim, Y-M., Suh, I-H., Kim, J-P., and Kim, Y-J., 2007, Electron crystallography of CaMoO4 using high voltage electron microscopy. Bulletin of the Korean Chemical Society, 28, 391–396.

    Article  Google Scholar 

  • Kim, J-G., Seo, J-W., Cheon, J., and Kim, Y-J., 2009, Rietveld analysis of nano-crystalline MnFe2O4 with electron powder diffraction. Bulletin of the Korean Chemical Society, 30, 183–187.

    Article  Google Scholar 

  • Kim, J-G., Song, K., Kwon, K., Hong, K., and Kim, Y-J., 2010, Structure analysis of inorganic crystals by energy-filtered precession electron diffraction. Journal of Electron Microscopy, 39, 273–283.

    Article  Google Scholar 

  • Kolodny, Y., Luz, B., Sander, M., and Clemens, W.A., 1996, Dinosaur bones: Fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils. Paleogeography, Paleoclimatology, Paleoecology, 126, 161–171.

    Article  Google Scholar 

  • Laing, B., 2001, Thermoregulation in dinosaurs: A continued controversy. Biological Sciences, 136.

  • Martill, D.M. and Unwin, D.M., 1997, Small spheres in fossil bones: blood corpuscles or diagenetic products? Paleontology, 40, 619–624.

    Google Scholar 

  • Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.Y., Kaufman, M.J., Douglas, E.P., and Gower, L.B., 2007, Bone structure and formation: A new perspective. Material Science and Engineering R, 58, 77–116.

    Article  Google Scholar 

  • Organ, C.L. and Adams, J., 2005, The histology of ossified tendons in dinosaurs. Journal of Vertebrate Paleontology, 25, 602–613.

    Article  Google Scholar 

  • Paik, I-S., Huh, M., and Kim, H-J., 2004, Dinosaur egg-bearing deposits (Upper Cretaceous of Beseong, Korea: occurrence, palaeoenvironments, taphonomy, and preservation. Paleogeography, Paleoclimatology, Paleoecology, 205, 155–168.

    Article  Google Scholar 

  • Ricqlès, A., Padian, K., Knoll, F., and Horner, J.R., 2008, On the origin of high growth rates in archosaurs and their ancient relatives: Complementary histological studies on Triassic archosauriformes and the problem of a “phylogenetic signal” in bone histology. Annales de Palèontologie, 94, 57–76.

    Article  Google Scholar 

  • Sartori, A., Gatz, R., Beck, F., Rigort, A., Baumeister, W., Plitzko, J.M., 2004, Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron microscopy. Journal of Structural Biology, 160, 135–146.

    Article  Google Scholar 

  • Schweitzer, M.H., Avci, R., Collier, T., and Goodwin, M.B., 2008, Microscopic, chemical and molecular methods for examining fossil preservation. Comptes Rendus Paleovol, 7, 159–184.

    Article  Google Scholar 

  • Schweitzer, M.H., Wittmeyer, J.L, Horner, J.R., and Toporski, J.K., 2005, Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science, 307, 1952–1955.

    Article  Google Scholar 

  • Showers, W.J., Barrick, R., and Bernard, G.., 2002, Isotopic analysis of dinosaur bones. Analytical Chemistry, 74, 142A–150A.

    Google Scholar 

  • Starck, J.M. and Chinsamy, A., 2002, Bone microstructure and developmental plasticity in birds and other dinosaurs. Journal of Morphology, 254, 232–246.

    Article  Google Scholar 

  • Tzaphlidou, M., 2008, Bone architecture: Collagen structure and calcium/phosphorus maps. Journal of Biological Physics, 34, 39–49.

    Article  Google Scholar 

  • Wiener, S. and Traub, W., 1992, Bone structure: from angstroms to microns. The FASEB Journal, 6, 879–885.

    Google Scholar 

  • Williams, D.B. and Carter, C.B., 2009, Transmission Electron Microscopy, 2nd edition. Springer, London, 760 p.

    Book  Google Scholar 

  • Wings, O., 2004, Authigenic minerals in fossil bones from the Mesozoic of England: poor correlation with depositional environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 15–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Joong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JK., Huh, M., Lee, SG. et al. Preliminary study on dinosaur rib microstructure by applying correlative microscopy techniques. Geosci J 15, 225–235 (2011). https://doi.org/10.1007/s12303-001-0026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-001-0026-1

Key words

Navigation