Skip to main content
Log in

Nanodendrites of platinum-group metals for electrocatalytic applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing highly efficient and durable catalysts for future electrochemical and energy applications is one of the main subjects of current studies in renewable energy generation. In the past several years, researchers have developed Pt-based alloy electrocatalyst nanomaterials that exhibit promising electrocatalytic properties for various electrochemical applications. The efficient structural and morphological control of Pt-based alloy materials plays a decisive role in achieving these enhanced electrocatalytic properties. The present review article emphasizes the recent progress and important developments in the synthesis and electrocatalytic applications of Pt-group-based nanodendrite materials. The following review will help the exploration and development of better catalysts for practical applications and aims to elucidate the nanodendrite structure of Pt-group metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

    Google Scholar 

  2. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Google Scholar 

  3. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Google Scholar 

  4. Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

    Google Scholar 

  5. Chaudhari, N. K.; Jin, H.; Kim, B.; Lee, K. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 2017, 9, 12231–12247.

    Google Scholar 

  6. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  7. Park, S.; Shao, Y. Y.; Liu, J.; Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective. Energy Environ. Sci. 2012, 5, 9331–9334.

    Google Scholar 

  8. Yoon, D.; Lee, J.; Seo, B.; Kim, B.; Baik, H.; Joo, S. H.; Lee, K. Cactus-like hollow Cu2–xS@Ru nanoplates as excellent and robust electrocatalysts for the alkaline hydrogen evolution reaction. Small 2017, 13, 1700052.

    Google Scholar 

  9. Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.

    Google Scholar 

  10. Kwon, T.; Hwang, H.; Sa, Y. J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1604688.

    Google Scholar 

  11. Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

    Google Scholar 

  12. Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

    Google Scholar 

  13. Lv, H. F.; Li, D. G.; Strmcnik, D.; Paulikas, A. P.; Markovic, N. M.; Stamenkovic, V. R. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy 2016, 29, 149–165.

    Google Scholar 

  14. Yoon, D.; Seo, B.; Lee, J.; Nam, K. S.; Kim, B.; Park, S.; Baik, H.; Joo, S. H.; Lee, K. Facet-controlled hollow Rh2S3 hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy Environ. Sci. 2016, 9, 850–856.

    Google Scholar 

  15. Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

    Google Scholar 

  16. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Google Scholar 

  17. Osgood, H.; Devaguptapu, S. V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016, 11, 601–625.

    Google Scholar 

  18. Zhang, L. L.; Chang, Q. W.; Chen, H. M.; Shao, M. H. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 29, 198–219.

    Google Scholar 

  19. Park, J.; Kim, J.; Yang, Y.; Yoon, D.; Baik, H.; Haam, S.; Yang, H.; Lee, K. RhCu 3D nanoframe as a highly active electrocatalyst for oxygen evolution reaction under alkaline condition. Adv. Sci. 2016, 3, 1500252.

    Google Scholar 

  20. Colic, V.; Bandarenka, A. S. Pt alloy electrocatalysts for the oxygen reduction reaction: From model surfaces to nanostructured systems. ACS Catal. 2016, 6, 5378–5385.

    Google Scholar 

  21. Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.

    Google Scholar 

  22. Chaudhari, N. K.; Jin, H.; Kim, B.; Baek, D. S.; Joo, S. H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 2017, 5, 24564–24579.

    Google Scholar 

  23. Guo, S. J.; Zhang, X.; Zhu, W. L.; He, K.; Su, D.; Mendoza- Garcia, A.; Ho, S. F.; Lu, G.; Sun, S. H. Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 2014, 136, 15026–15033.

    Google Scholar 

  24. Xu, G.-R.; Bai, J.; Yao, L.; Xue, Q.; Jiang, J.-X.; Zeng, J.-H.; Chen, Y.; Lee, J.-M. Polyallylamine-functionalized platinum tripods: Enhancement of hydrogen evolution reaction by proton carriers. ACS Catal. 2017, 7, 452–458.

    Google Scholar 

  25. Xu, G.-R.; Bai, J.; Jiang, J.-X.; Lee, J.-M.; Chen, Y. Polyethyleneimine functionalized platinum superstructures: Enhancing hydrogen evolution performance by morphological and interfacial control. Chem. Sci. 2017, 8, 8411–8418.

    Google Scholar 

  26. Xu, G.-R.; Bai, W.; Zhu, J.-Y.; Liu, F.-Y.; Chen, Y.; Zeng, J.-H.; Jiang, J.-X.; Liu, Z.-H.; Tang, Y.-W.; Lee, J.-M. Morphological and interfacial control of platinum nanostructures for electrocatalytic oxygen reduction. ACS Catal. 2016, 6, 5260–5267.

    Google Scholar 

  27. Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M. C.; Guo, S. J. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 2016, 28, 10117–10141.

    Google Scholar 

  28. Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S. H.; Daimon, H.; Wang, G. F.; Greeley, J.; Pearson, J. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 2011, 11, 919–926.

    Google Scholar 

  29. Guo, S. J.; Zhang, S.; Su, D.; Sun, S. H. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 13879–13884.

    Google Scholar 

  30. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Google Scholar 

  31. Shao, M. H.; Chang, Q. W.; Dodelet, J.-P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

    Google Scholar 

  32. Greeley, J.; Stephens, I. E.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Google Scholar 

  33. Antolini, E. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 2014, 4, 1426–1440.

    Google Scholar 

  34. You, H. J.; Yang, S. C.; Ding, B. J.; Yang, H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Rev. 2013, 42, 2880–2904.

    Google Scholar 

  35. Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt–Ru? Chem. Rev. 2014, 114, 12397–12429.

    Google Scholar 

  36. Hsieh, Y. C.; Zhang, Y.; Su, D.; Volkov, V.; Si, R.; Wu, L. J.; Zhu, Y. M.; An, W.; Liu, P.; He, P. et al. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 2013, 4, 2466.

    Google Scholar 

  37. Oh, A.; Kang, D.; Kim, J.; Baik, H.; Lee, K. Synthesis of concave Pt nanocubes and concave Mn-doped Pt nanooctahedra by identifying a synergistic effect among surface binding moieties. Part. Part. Syst. Charact. 2015, 32, 986–990.

    Google Scholar 

  38. Jin, H.; Lee, K. W.; Khi, N. T.; An, H.; Park, J.; Baik, H.; Kim, J.; Yang, H.; Lee, K. Rational synthesis of heterostructured M/Pt (M = Ru or Rh) octahedral nanoboxes and octapods and their structure-dependent electrochemical activity toward the oxygen evolution reaction. Small 2015, 11, 4462–4468.

    Google Scholar 

  39. Park, J.; Liu, J. Y.; Peng, H.-C.; Figueroa-Cosme, L.; Miao, S.; Choi, S.-I.; Bao, S. X.; Yang, X.; Xia, Y. N. Coating Pt–Ni octahedra with ultrathin Pt shells to enhance the durability without compromising the activity toward oxygen reduction. ChemSusChem 2016, 9, 2209–2215.

    Google Scholar 

  40. Bu, L. Z.; Shao, Q. E. B.; Guo, J.; Yao, J. L.; Huang, X. Q. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2017, 139, 9576–9582.

    Google Scholar 

  41. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Google Scholar 

  42. Beermann, V.; Gocyla, M.; Willinger, E.; Rudi, S.; Heggen, M.; Dunin-Borkowski, R. E.; Willinger, M.-G.; Strasser, P. Rh-doped Pt–Ni octahedral nanoparticles: Understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability. Nano Lett. 2016, 16, 1719–1725.

    Google Scholar 

  43. Yang, H. Platinum-based electrocatalysts with core-shell nanostructures. Angew. Chem., Int. Ed. 2011, 50, 2674–2676.

    Google Scholar 

  44. Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 2015, 15, 2468–2473.

    Google Scholar 

  45. Zhu, H. Y.; Zhang, S.; Su, D.; Jiang, G. M.; Sun, S. H. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction. Small 2015, 11, 3545–3549.

    Google Scholar 

  46. Li, J. R.; Xi, Z.; Pan, Y.-T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z. Y.; Shen, B. et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc. 2018, 140, 2926–2932.

    Google Scholar 

  47. Li, F.-M.; Gao, X.-Q.; Li, S.-N.; Chen, Y.; Lee, J.-M. Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Mater. 2015, 7, e219.

    Google Scholar 

  48. Oh, A.; Sa, Y. J.; Hwang, H.; Baik, H.; Kim, J.; Kim, B.; Joo, S. H.; Lee, K. Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale 2016, 8, 16379–16386.

    Google Scholar 

  49. Yang, Y.; Jin, H.; Kim, H. Y.; Yoon, J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Ternary dendritic nanowires as highly active and stable multifunctional electrocatalysts. Nanoscale 2016, 8, 15167–15172.

    Google Scholar 

  50. Stern, M.; Wissenberg, H. The influence of noble metal alloy additions on the electrochemical and corrosion behavior of titanium. J. Electrochem. Soc. 1959, 106, 759–764.

    Google Scholar 

  51. Buchanan, R. A.; Lee, I.-S.; Williams, J. M. Surface modification of biomaterials through noble metal ion implantation. J Biomed. Mater. Res. 1990, 24, 309–318.

    Google Scholar 

  52. Ye, E. Y.; Regulacio, M. D.; Zhang, S.-Y.; Loh, X. J.; Han, M.-Y. Anisotropically branched metal nanostructures. Chem. Soc. Rev. 2015, 44, 6001–6017.

    Google Scholar 

  53. Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. Role of crystalline defects in electrocatalysis: Mechanism and kinetics of COadlayer oxidation on stepped platinum electrodes. J. Phys. Chem. B 2002, 106, 12938–12947.

    Google Scholar 

  54. Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Google Scholar 

  55. Lim, B.; Jiang, M. J.; Camargo, P. H.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Google Scholar 

  56. Wang, J.; Zhang, X.-B.; Wang, Z.-L.; Wang, L.-M.; Xing, W.; Liu, X. One-step and rapid synthesis of “clean” and monodisperse dendritic Pt nanoparticles and their high performance toward methanol oxidation and p-nitrophenol reduction. Nanoscale 2012, 4, 1549–1552.

    Google Scholar 

  57. Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

    Google Scholar 

  58. Zhang, H.; Jin, H. S.; Xia, Y. N. Noble-metal nanocrystals with concave surfaces: Synthesis and applications. Angew. Chem., Int. Ed. 2012, 51, 7656–7673.

    Google Scholar 

  59. Lee, H.; Kim, C.; Yang, S.; Han, J. W.; Kim, J. Shapecontrolled nanocrystals for catalytic applications. Catal. Surv. Asia 2012, 16, 14–27.

    Google Scholar 

  60. Zhang, S.; Hao, Y. Z.; Su, D.; Doan-Nguyen, V. V. T.; Wu, Y. T.; Li, J.; Sun, S. H.; Murray, C. B. Monodisperse core/ shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction. J. Am. Chem. Soc. 2014, 136, 15921–15924.

    Google Scholar 

  61. Song, Y. J.; Yang, Y.; Medforth, C. J.; Pereira, E.; Singh, A. K.; Xu, H. F.; Jiang, Y. B.; Brinker, J.; van Swol, F.; Shelnutt, J. A. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J. Am. Chem. Soc. 2004, 126, 635–645.

    Google Scholar 

  62. Shen, Q. M.; Jiang, L. P.; Zhang, H.; Min, Q. H.; Hou, W. H.; Zhu, J.-J. Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J. Phys. Chem. C 2008, 112, 16385–16392.

    Google Scholar 

  63. Wang, S. Y.; Kristian, N.; Jiang, S. P.; Wang, X. Controlled synthesis of dendritic Au@Pt core–shell nanomaterials for use as an effective fuel cell electrocatalyst. Nanotechnology 2009, 20, 025605.

    Google Scholar 

  64. Wang, L.; Yamauchi, Y. Block copolymer mediated synthesis of dendritic platinum nanoparticles. J. Am. Chem. Soc. 2009, 131, 9152–9153.

    Google Scholar 

  65. Kim, C.; Lee, H. Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. Cat. Commun. 2009, 11, 7–10.

    Google Scholar 

  66. Kim, C.; Oh, J.-G.; Kim, Y.-T.; Kim, H.; Lee, H. Platinum dendrites with controlled sizes for oxygen reduction reaction. Electrochem. Commun. 2010, 12, 1596–1599.

    Google Scholar 

  67. Patra, S.; Viswanath, B.; Barai, K.; Ravishankar, N.; Munichandraiah, N. High-surface step density on dendritic Pd leads to exceptional catalytic activity for formic acid oxidation. ACS Appl. Mater. Interfaces 2010, 2, 2965–2969.

    Google Scholar 

  68. Guo, S. J.; Li, J.; Dong, S. J.; Wang, E. K. Three-dimensional Pt-on-Au bimetallic dendritic nanoparticle: One-step, high-yield synthesis and its bifunctional plasmonic and catalytic properties. J. Phys. Chem. C 2010, 114, 15337–15342.

    Google Scholar 

  69. Wang, L.; Wang, H. J.; Nemoto, Y.; Yamauchi, Y. Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid. Chem. Mater. 2010, 22, 2835–2841.

    Google Scholar 

  70. Wang, L.; Yamauchi, Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 2010, 132, 13636–13638.

    Google Scholar 

  71. Kang, S. W.; Lee, Y. W.; Kim, M.; Hong, J. W.; Han, S. W. One-pot synthesis of carbon-supported dendritic Pd-Au nanoalloys for electrocatalytic ethanol oxidation. Chem. Asian J. 2011, 6, 909–913.

    Google Scholar 

  72. Yang, F.; Cheng, K.; Mo, Y. H.; Yu, L. Q.; Yin, J. L.; Wang, G. L.; Cao, D. X. Direct peroxide–peroxide fuel cell—Part 1: The anode and cathode catalyst of carbon fiber cloth supported dendritic Pd. J. Power Sources 2012, 217, 562–568.

    Google Scholar 

  73. Kim, H.; Khi, N. T.; Yoon, J.; Yang, H.; Chae, Y.; Baik, H.; Lee, H.; Sohn, J.-H.; Lee, K. Fabrication of hierarchical Rh nanostructures by understanding the growth kinetics of facet-controlled Rh nanocrystals. Chem. Commun. 2013, 49, 2225–2227.

    Google Scholar 

  74. Li, C. L.; Yamauchi, Y. Facile solution synthesis of Ag@Pt core–shell nanoparticles with dendritic Pt shells. Phys. Chem. Chem. Phys. 2013, 15, 3490–3496.

    Google Scholar 

  75. Wang, L.; Yamauchi, Y. Metallic Nanocages: Synthesis of bimetallic Pt–Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762–16765.

    Google Scholar 

  76. Lee, Y.-W.; Kim, B.-Y.; Lee, K.-H.; Song, W.-J.; Cao, G. Z.; Park, K.-W. Synthesis of monodispersed Pt-Ni alloy nanodendrites and their electrochemical properties. Int. J. Electrochem. Sci. 2013, 8, 2305–2312.

    Google Scholar 

  77. Wang, C.; Xiao, G. J.; Sui, Y. M.; Yang, X. Y.; Liu, G.; Jia, M. J.; Han, W.; Liu, B. B.; Zou, B. Synthesis of dendritic iridium nanostructures based on the oriented attachment mechanism and their enhanced CO and ammonia catalytic activities. Nanoscale 2014, 6, 15059–15065.

    Google Scholar 

  78. Hao, Y. F.; Yang, Y. Y.; Hong, L. J.; Yuan, J. H.; Niu, L.; Gui, Y. H. Facile preparation of ultralong dendritic PtIrTe nanotubes and their high electrocatalytic activity on methanol oxidation. ACS Appl. Mater. Interfaces 2014, 6, 21986–21994.

    Google Scholar 

  79. Hong, W.; Wang, J.; Wang, E. K. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 2014, 10, 3262–3265.

    Google Scholar 

  80. Lee, Y.-W. Park, K.-W. Pt–Rh alloy nanodendrites for improved electrocatalytic activity and stability in methanol electrooxidation reaction. Catal. Commun. 2014, 55, 24–28.

    Google Scholar 

  81. Khi, N. T.; Yoon, J.; Baik, H.; Lee, S.; Ahn, D. J.; Kwon, S. J.; Lee, K. Twinning boundary-elongated hierarchical Pt dendrites with an axially twinned nanorod core for excellent catalytic activity. CrystEngComm 2014, 16, 8312–8316.

    Google Scholar 

  82. Nguyen, T.-T.; Pan, C.-J.; Liu, J.-Y.; Chou, H.-L.; Rick, J.; Su, W.-N.; Hwang, B.-J. Functional palladium tetrapod core of heterogeneous palladium–platinum nanodendrites for enhanced oxygen reduction reaction. J. Power Sources 2014, 251, 393–401.

    Google Scholar 

  83. Liu, J.; Wang, X. H.; Lin, Z. J.; Cao, Y.; Zheng, Z. Z.; Zeng, Z. G.; Hu, Z. Y. Shape-controllable pulse electrodeposition of ultrafine platinum nanodendrites for methanol catalytic combustion and the investigation of their local electric field intensification by electrostatic force microscope and finite element method. Electrochim. Acta 2014, 136, 66–74.

    Google Scholar 

  84. Cai, Z.-X.; Liu, C.-C.; Wu, G.-H.; Chen, X.-M.; Chen, X. Green synthesis of Pt-on-Pd bimetallic nanodendrites on graphene via in situ reduction, and their enhanced electrocatalytic activity for methanol oxidation. Electrochim. Acta 2014, 127, 377–383.

    Google Scholar 

  85. Wang, Y.-X.; Zhou, H.-J.; Sun, P.-C.; Chen, T.-H. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt–Cu nanocrystals catalysts. J. Power Sources 2014, 245, 663–670.

    Google Scholar 

  86. Eid, K.; Wang, H. J.; Malgras, V.; Alothman, Z. A.; Yamauchi, Y.; Wang, L. Trimetallic PtPdRu dendritic nanocages with three-dimensional electrocatalytic surfaces. J. Phys. Chem. C 2015, 119, 19947–19953.

    Google Scholar 

  87. Oh, H.-S.; Nong, H. N.; Reier, T.; Gliech, M.; Strasser, P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem. Sci. 2015, 6, 3321–3328.

    Google Scholar 

  88. Lee, K. W.; Park, J.; Lee, H.; Yoon, D.; Baik, H.; Haam, S.; Sohn, J.-H.; Lee, K. Morphological evolution of 2D Rh nanoplates to 3D Rh concave nanotents, hierarchically stacked nanoframes, and hierarchical dendrites. Nanoscale 2015, 7, 3460–3465.

    Google Scholar 

  89. Wang, D.-Y.; Chou, H.-L.; Cheng, C.-C.; Wu, Y.-H.; Tsai, C.-M.; Lin, H.-Y.; Wang, Y.-L.; Hwang, B.-J.; Chen, C.-C. FePt nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction. Nano Energy 2015, 11, 631–639.

    Google Scholar 

  90. Khi, N. T.; Park, J.; Baik, H.; Lee, H.; Sohn, J.-H.; Lee, K. Facet-controlled {100}Rh–Pt and {100}Pt–Pt dendritic nanostructures by transferring the {100} facet nature of the core nanocube to the branch nanocubes. Nanoscale 2015, 7, 3941–3946.

    Google Scholar 

  91. Yoon, D.; Bang, S.; Jin, H.; Baik, H.; Lee, K. One step synthesis of hierarchical dendritic Pt nanostructures with a concave Pt octahedron building unit via simultaneous vertex growth and facet etching. CrystEngComm 2015, 17, 6848–6851.

    Google Scholar 

  92. Yang, T.; Ma, Y. X.; Huang, Q. L.; He, M. S.; Cao, G. J.; Sun, X.; Zhang, D. E.; Wang, M. Y.; Zhao, H.; Tong, Z. W. High durable ternary nanodendrites as effective catalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 23646–23654.

    Google Scholar 

  93. Jia, H. M.; Chang, G.; Lei, M.; He, H. P.; Liu, X.; Shu, H. H.; Xia, T. T.; Su, J.; He, H. B. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation. Appl. Surf. Sci. 2016, 384, 58–64.

    Google Scholar 

  94. Zhu, J.-Y.; Li, F.-M.; Yao, L.; Han, C.-C.; Li, S.-N.; Zeng, J.-H.; Jiang, J.-X.; Lee, J.-M.; Chen, Y. In situ bubble templateassisted synthesis of phosphonate-functionalized Rh nanodendrites and their catalytic application. CrystEngComm 2017, 19, 2946–2952.

    Google Scholar 

  95. Feng, J.-J.; Chen, L.-X.; Ma, X. H.; Yuan, J. H.; Chen, J.-R.; Wang, A.-J.; Xu, Q.-Q. Bimetallic AuPt alloy nanodendrites/ reduced graphene oxide: One-pot ionic liquid-assisted synthesis and excellent electrocatalysis towards hydrogen evolution and methanol oxidation reactions. Int. J. Hydrogen Energy 2017, 42, 1120–1129.

    Google Scholar 

  96. Xie, X.-W.; Lv, J.-J.; Liu, L.; Wang, A.-J.; Feng, J.-J.; Xu, Q.-Q. Amino acid-assisted fabrication of uniform dendrite-like PtAu porous nanoclusters as highly efficient electrocatalyst for methanol oxidation and oxygen reduction reactions. Int. J. Hydrogen Energy 2017, 42, 2104–2115.

    Google Scholar 

  97. Zhang, K.; Xu, H.; Yan, B.; Wang, J.; Gu, Z. L.; Du, Y. K. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation. Appl. Surf. Sci. 2017, 425, 77–82.

    Google Scholar 

  98. Chang, Q. W.; Xu, Y.; Zhu, S. Q.; Xiao, F.; Shao, M. H. Pt-Ni nanourchins as electrocatalysts for oxygen reduction reaction. Front. Energy 2017, 11, 254–259.

    Google Scholar 

  99. Feng, J.-J.; Liu, L.; Ma, X. H.; Yuan, J. H.; Wang, A.-J. Ultrasonication-assisted wet-chemical fabrication of uniform AuPt nanodendrites as efficient electrocatalyst for oxygen reduction and hydrogen evolution reactions. Int. J. Hydrogen Energy 2017, 42, 2071–2080.

    Google Scholar 

  100. Lu, S. L.; Eid, K.; Deng, Y. Y.; Guo, J.; Wang, L.; Wang, H. J.; Gu, H. W. One-pot synthesis of PtIr tripods with a dendritic surface as an efficient catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 9107–9112.

    Google Scholar 

  101. Jia, H. M.; Chang, G.; Shu, H. H.; Xu, M. J.; Wang, X. Y.; Zhang, Z. L.; Liu, X.; He, H. P.; Wang, K.; Zhu, R. Z. et al. Pt nanoparticles modified Au dendritic nanostructures: Facile synthesis and enhanced electrocatalytic performance for methanol oxidation. Int. J. Hydrogen Energy 2017, 42, 22100–22107.

    Google Scholar 

  102. Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem., Int. Ed. 2013, 52, 7472–7476.

    Google Scholar 

  103. Teng, X. W.; Liang, X. Y.; Maksimuk, S.; Yang, H. Synthesis of porous platinum nanoparticles. Small 2006, 2, 249–253.

    Google Scholar 

  104. Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. D. Morphological control of catalytically active platinum nanocrystals. Angew. Chem., Int. Ed. 2006, 45, 7824–7828.

    Google Scholar 

  105. Rolison, D. R. Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity. Science 2003, 299, 1698–1701.

    Google Scholar 

  106. Mohanty, A.; Garg, N.; Jin, R. C. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem., Int. Ed. 2010, 49, 4962–4966.

    Google Scholar 

  107. Ma, L.; Wang, C. M.; Gong, M.; Liao, L. W.; Long, R.; Wang, J. G.; Wu, D.; Zhong, W.; Kim, M. J.; Chen, Y. X. et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 2012, 6, 9797–9806.

    Google Scholar 

  108. Wang, F.; Li, C. H.; Sun, L.-D.; Xu, C.-H.; Wang, J. F.; Yu, J. C.; Yan, C.-H. Porous single-crystalline palladium nanoparticles with high catalytic activities. Angew. Chem., Int. Ed. 2012, 51, 4872–4876.

    Google Scholar 

  109. Kuang, Y.; Zhang, Y.; Cai, Z.; Feng, G.; Jiang, Y. Y.; Jin, C. H.; Luo, J.; Sun, X. M. Single-crystalline dendritic bimetallic and multimetallic nanocubes. Chem. Sci. 2015, 6, 7122–7129.

    Google Scholar 

  110. Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Aloni, S.; Yin, Y. D. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am. Chem. Soc. 2005, 127, 7332–7333.

    Google Scholar 

  111. Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Yin, Y. D.; Li, Z.-Y. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett. 2005, 5, 1237–1242.

    Google Scholar 

  112. Xiong, Y. J.; Cai, H. G.; Wiley, B. J.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 2007, 129, 3665–3675.

    Google Scholar 

  113. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

    Google Scholar 

  114. Chen, J. Y.; Lim, B.; Lee, E. P.; Xia, Y. N. Shapecontrolled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81–95.

    Google Scholar 

  115. Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

    Google Scholar 

  116. Ortiz, N.; Skrabalak, S. E. Manipulating local ligand environments for the controlled nucleation of metal nanoparticles and their assembly into nanodendrites. Angew. Chem., Int. Ed. 2012, 51, 11757–11761.

    Google Scholar 

  117. Oh, A.; Baik, H.; Choi, D. S.; Cheon, J. Y.; Kim, B.; Kim, H.; Kwon, S. J.; Joo, S. H.; Jung, Y.; Lee, K. Skeletal octahedral nanoframe with cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core–shell nanocrystal. ACS Nano 2015, 9, 2856–2867.

    Google Scholar 

  118. Gong, M. X.; Fu, G. T.; Chen, Y.; Tang, Y. W.; Lu, T. H. Autocatalysis and selective oxidative etching induced synthesis of platinum–copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl. Mater. Interfaces 2014, 6, 7301–7308.

    Google Scholar 

  119. Lin, T.-H.; Lin, C.-W.; Liu, H.-H.; Sheu, J.-T.; Hung, W.-H. Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chem. Commun. 2011, 47, 2044–2046.

    Google Scholar 

  120. Arihara, K.; Ariga, T.; Takashima, N.; Arihara, K.; Okajima, T.; Kitamura, F.; Tokuda, K.; Ohsaka, T. Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates. Phys. Chem. Chem. Phys. 2003, 5, 3758–3761.

    Google Scholar 

  121. Zhong, X. H.; Feng, Y. Y.; Lieberwirth, I.; Knol, W. Facile synthesis of morphology-controlled platinum nanocrystals. Chem. Mater. 2006, 18, 2468–2471.

    Google Scholar 

  122. Zhang, H.-T.; Ding, J.; Chow, G.-M. Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 2008, 24, 375–378.

    Google Scholar 

  123. Sakai, T.; Alexandridis, P. Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J. Phys. Chem. B 2005, 109, 7766–7777.

    Google Scholar 

  124. Niesz, K.; Grass, M.; Somorjai, G. A. Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents. Nano Lett. 2005, 5, 2238–2240.

    Google Scholar 

  125. Meier, M. A. R.; Filali, M.; Gohy, J. F.; Schubert, U. S. Star-shaped block copolymer stabilized palladium nanoparticles for efficient catalytic Heck cross-coupling reactions. J. Mater. Chem. 2006, 16, 3001–3006.

    Google Scholar 

  126. Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.

    Google Scholar 

  127. Ahmadi, T. S.; Wang, Z. L.; Greem, T. C.; Heglein, A.; El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996, 272, 1924–1925.

    Google Scholar 

  128. Yoon, D.; Bang, S.; Park, J.; Kim, J.; Baik, H.; Yang, H.; Lee, K. One pot synthesis of octahedral {111} CuIr gradient alloy nanocrystals with a Cu-rich core and an Ir-rich surface and their usage as efficient water splitting catalyst. CrystEngComm 2015, 17, 6843–6847.

    Google Scholar 

  129. Quan, Z. W.; Wang, Y. X.; Fang, J. Y. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 191–202.

    Google Scholar 

  130. Mahesh, K. N.; Balaji, R.; Dhathathreyan, K. S. Palladium nanoparticles as hydrogen evolution reaction (HER) electrocatalyst in electrochemical methanol reformer. Int. J. Hydrogen Energy 2016, 41, 46–51.

    Google Scholar 

  131. Wang, A.-L.; He, X.-J.; Lu, X.-F.; Xu, H.; Tong, Y.-X.; Li, G.-R. Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew. Chem., Int. Ed. 2015, 54, 3669–3673.

    Google Scholar 

  132. Klinkova, A.; De Luna, P.; Sargent, E. H.; Kumacheva, E.; Cherepanov, P. V. Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J. Mater. Chem. A 2017, 5, 11582–11585.

    Google Scholar 

  133. Xi, Z.; Li, J. R.; Su, D.; Muzzio, M.; Yu, C.; Li, Q.; Sun, S. H. Stabilizing CuPd nanoparticles via CuPd coupling to WO2.72 nanorods in electrochemical oxidation of formic acid. J. Am. Chem. Soc. 2017, 139, 15191–15196.

    Google Scholar 

  134. Yan, X. L.; Meng, F. H.; Xie, Y.; Liu, J. G.; Ding, Y. Direct N2H4/H2O2 fuel cells powered by nanoporous gold leaves. Sci. Reps. 2012, 2, 941.

    Google Scholar 

  135. Lee, S. W.; Chen, S.; Sheng, W. C.; Yabuuchi, N.; Kim, Y.-T.; Mitani, T.; Vescovo, E.; Shao-Horn, Y. Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol. J. Am. Chem. Soc. 2009, 131, 15669–15677.

    Google Scholar 

  136. Housmans, T. H. M.; Koper, M. T. M. Methanol oxidation on stepped Pt[n(111)×(110)] electrodes:?? A chronoamperometric study. J. Phys. Chem. B 2003, 107, 8557–8567.

    Google Scholar 

  137. Khi, N. T.; Baik, H.; Lee, H.; Yoon, J.; Sohn, J.-H.; Lee, K. Rationally synthesized five-fold twinned core–shell Pt3Ni@Rh nanopentagons, nanostars and nanopaddle wheels for selective reduction of a phenyl ring of phthalimide. Nanoscale 2014, 6, 11007–11012.

    Google Scholar 

  138. Zhang, J.; Wang, G.; Liao, Z. Q.; Zhang, P. P.; Wang, F. X.; Zhuang, X. D.; Zschech, E.; Feng, X. L. Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy 2017, 40, 27–33.

    Google Scholar 

  139. Park, J.; Sa, Y. J.; Baik, H.; Kwon, T.; Joo, S. H.; Lee, K. Iridium-based multimetallic nanoframe@nanoframe structure: An efficient and robust electrocatalyst toward oxygen evolution reaction. ACS Nano 2017, 11, 5500–5509.

    Google Scholar 

  140. Kong, F.-D.; Zhang, S.; Yin, G.-P.; Zhang, N.; Wang, Z.-B.; Du, C.-Y. Preparation of Pt/Irx(IrO2)10–x bifunctional oxygen catalyst for unitized regenerative fuel cell. J. Power Sources 2012, 210, 321–326.

    Google Scholar 

  141. Mamaca, N.; Mayousse, E.; Arrii-Clacens, S.; Napporn, T. W.; Servat, K.; Guillet, N.; Kokoh, K. B. Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Appl. Catal. B-Environ. 2012, 111–112, 376–380.

    Google Scholar 

  142. Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.

    Google Scholar 

  143. Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.

    Google Scholar 

  144. Wang, J. J.; Yin, G. P.; Shao, Y. Y.; Zhang, S.; Wang, Z. B.; Gao, Y. Z. Effect of carbon black support corrosion on the durability of Pt/C catalyst. J. Power Sources 2007, 171, 331–339.

    Google Scholar 

  145. Antolini, E. Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Appl. Catal. B: Environ. 2016, 181, 298–313.

    Google Scholar 

  146. Kang, Y. Q.; Li, F. M.; Li, S. N.; Jin, P. J.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Res. 2016, 9, 3893–3902.

    Google Scholar 

  147. Yuan, Q.; Zhou, Z. Y.; Zhuang, J.; Wang, X. Tunable aqueous phase synthesis and shape-dependent electrochemical properties of rhodium nanostructures. Inorg. Chem. 2010, 49, 5515–5521.

    Google Scholar 

  148. Xie, S. F.; Liu, X. Y.; Xi, Y. N. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Res. 2015, 8, 82–96.

    Google Scholar 

  149. Yu, N.-F.; Tian, N.; Zhou, Z.-Y.; Huang, L.; Xiao, J.; Wen, Y.-H.; Sun, S.-G. Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity. Angew. Chem., Int. Ed. 2014, 53, 5097–5101.

    Google Scholar 

  150. Zhang, Z.-P.; Zhu, W.; Yan, C.-H.; Zhang, Y.-W. Selective synthesis of rhodium-based nanoframe catalysts by chemical etching of 3d metals. Chem. Commun. 2015, 51, 3997–4000.

    Google Scholar 

  151. Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J.; Yu, T.; Yang, D. R.; Xia, Y. N. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett. 2011, 11, 898–903.

    Google Scholar 

  152. Liu, H.-M.; Han, S.-H.; Zhao, Y.; Zhu, Y.-Y.; Tian, X.-L.; Zeng, J.-H.; Jiang, J.-X.; Xia, B. Y.; Chen, Y. Surfactantfree atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A 2018, 6, 3211–3217.

    Google Scholar 

  153. Chen, Q. L.; Zhang, J. W.; Jia, Y. Y.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale 2014, 6, 7019–7024.

    Google Scholar 

  154. Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.

    Google Scholar 

  155. Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.

    Google Scholar 

  156. Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem., Int. Ed. 2006, 45, 2897–2901.

    Google Scholar 

  157. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zett, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Google Scholar 

  158. Wu, Y. E.; Wang, D. S.; Chen, X. B.; Zhou, G.; Yu, R.; Li, Y. D. Defect-dominated shape recovery of nanocrystals: A new strategy for trimetallic catalysts. J. Am. Chem. Soc. 2013, 135, 12220–12223.

    Google Scholar 

  159. Gan, L.; Heggen, M.; O’Malley, R.; Theobald, B.; Strasser, P. Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 2013, 13, 1131–1138.

    Google Scholar 

  160. Yang, T.; Cao, G. J.; Huang, Q. L.; Ma, Y. X.; Wan, S.; Zhao, H.; Li, N.; Yin, F. J.; Sun, X.; Zhang, D. E. et al. Truncated octahedral platinum–nickel–iridium ternary electro-catalyst for oxygen reduction reaction. J. Power Sources 2015, 291, 201–208.

    Google Scholar 

  161. Arán-Ais, R. M.; Dionigi, F.; Merzdorf, T.; Gocyla, M.; Heggen, M.; Dunin-Borkowski, R. E.; Gliech, M.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. et al. Elemental anisotropic growth and atomic-scale structure of shapecontrolled octahedral Pt–Ni–Co alloy nanocatalysts. Nano Lett. 2015, 15, 7473–7480.

    Google Scholar 

  162. Choi, S.-I.; Shao, M. H.; Lu, N.; Ruditskiy, A.; Peng, H.-C.; Park, J.; Guerrero, S.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and characterization of Pd@Pt–Ni core–shell octahedra with high activity toward oxygen reduction. ACS Nano 2014, 8, 10363–10371.

    Google Scholar 

  163. Zhao, X.; Chen, S.; Fang, Z. C.; Ding, J.; Sang, W.; Wang, Y. C.; Zhao, J.; Peng, Z. M.; Zeng, J. Octahedral Pd@Pt1.8Ni core–shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 2804–2807.

    Google Scholar 

  164. Yang, T.; Ma, Y. X.; Huang, Q. L.; Cao, G. J. Palladium–iridium nanocrystals for enhancement of electrocatalytic activity toward oxygen reduction reaction. Nano Energy 2016, 19, 257–268.

    Google Scholar 

  165. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.

    Google Scholar 

  166. Suntivich, J.; Xu, Z. C.; Carlton, C. E.; Kim, J.; Han, B. H.; Lee, S. W.; Bonnet, N.; Marzari, N.; Allard, L. F.; Gasteiger, H. A. et al. Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 2013, 135, 7985–7991.

    Google Scholar 

  167. Yoon, J.; Baik, H.; Lee, S.; Kwon, S. J.; Lee, K. One-pot synthesis of ultralong coaxial Au@Pt nanocables with numerous highly catalytically active perpendicular twinning boundaries and Au@Pt core–shell bead structures. Nanoscale 2014, 6, 6434–6439.

    Google Scholar 

  168. Bian, T.; Zhang, H.; Jiang, Y. Y.; Jin, C. H.; Wu, J. B.; Yang, H.; Yang, D. R. Epitaxial growth of twinned Au–Pt core–shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 2015, 15, 7808–7815.

    Google Scholar 

  169. Zhang, L.; Yu, S. N.; Zhang, J. J.; Gong, J. L. Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities. Chem. Sci. 2016, 7, 3500–3505.

    Google Scholar 

  170. Dutta, S.; Ray, C.; Sarkar, S.; Roy, A.; Sahoo, R.; Pal, T. Facile synthesis of bimetallic Au-Pt, Pd-Pt, and Au-Pd nanostructures: Enhanced catalytic performance of Pd-Pt analogue towards fuel cell application and electrochemical sensing. Electrochim. Acta 2015, 180, 1075–1084.

    Google Scholar 

  171. Lv, H. F.; Xi, Z.; Chen, Z. Z.; Guo, S. J.; Yu, Y. S.; Zhu, W. L.; Li, Q.; Zhang, X.; Pan, M.; Lu, G. et al. A new core/shell NiAu/Au nanoparticle catalyst with Pt-like activity for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 5859–5862.

    Google Scholar 

  172. Sun, X. L.; Li, D. G.; Guo, S. J.; Zhu, W. L.; Sun, S. H. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale 2016, 8, 2626–2631.

    Google Scholar 

  173. Xi, Z.; Lv, H. F.; Erdosy, D. P.; Su, D.; Li, Q.; Yu, C.; Li, J. R.; Sun, S. H. Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt. Nanoscale 2017, 9, 7745–7749.

    Google Scholar 

  174. Min, M.; Kim, C.; Yang, Y. I.; Yi, J.; Lee, H. Surfacespecific overgrowth of platinum on shaped gold nanocrystals. Phys. Chem. Chem. Phys. 2009, 11, 9759–9765.

    Google Scholar 

  175. Guo, S. J.; Wang, L.; Dong, S. J.; Wang, E. K. A novel urchinlike gold/platinum hybrid nanocatalyst with controlled size. J. Phys. Chem. C 2008, 112, 13510–13515.

    Google Scholar 

  176. Fu, G. T.; Liu, C.; Wu, R.; Chen, Y.; Zhu, X. S.; Sun, D. M.; Tang, Y. W.; Lu, T. H. L-Lysine mediated synthesis of platinum nanocuboids and their electrocatalytic activity towards ammonia oxidation. J. Mater. Chem. A 2014, 2, 17883–17888.

    Google Scholar 

  177. Chaudhari, N. K.; Kim, M.-S.; Bae, T.-S.; Yu, J.-Y. Hematite (a-Fe2O3) nanoparticles on vulcan carbon as an ultrahigh capacity anode material in lithium ion battery. Electrochim. Acta 2013, 114, 60–67.

    Google Scholar 

  178. Fu, G. T.; Jiang, X.; Wu, R.; Wei, S. H.; Sun, D. M.; Tang, Y. W.; Lu, T. H.; Chen, Y. Arginine-assisted synthesis and catalytic properties of single-crystalline palladium tetrapods. ACS Appl. Mater. Inter. 2014, 6, 22790–22795.

    Google Scholar 

  179. Sabatier, P. Hydrogénation and déhydrogénation by catalysis. Ber. Dtsch. Chem. Ges. 1911, 44, 1984–2001.

    Google Scholar 

  180. Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals: The case of Pt–Co and–Ni alloy electrocatalysts for DMFCs: A short review. Appl. Catal. B: Environ. 2006, 63, 137–149.

    Google Scholar 

  181. Bagotzky, V. S.; Vassiliev, Y. B.; Khazova, O. A. Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. J. Electroanal. Chem. 1977, 81, 229–238.

    Google Scholar 

  182. Parsons, R.; VanderNoot, T. The oxidation of small organic molecules: A survey of recent fuel cell related research. J. Electroanal. Chem. 1988, 257, 9–45.

    Google Scholar 

  183. Ozoemena, K. I. Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: Catalyst design, principles and applications. RSC Adv. 2016, 6, 89523–89550.

    Google Scholar 

  184. Abd-El-Latif, A. A.; Baltruschat, H. Formation of methylformate during methanol oxidation revisited: The mechanism. J. Electroanal. Chem. 2011, 662, 204–212.

    Google Scholar 

  185. Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. Mechanisms of methanol decomposition on platinum:?? A combined experimental and ab initio approach. J. Phys. Chem. B 2005, 109, 11622–11633.

    Google Scholar 

  186. Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Adv. Sci. 2017, 3, e1601705.

    Google Scholar 

  187. Du, X. W.; Luo, S. P.; Du, H. Y.; Tang, M.; Huang, X. D.; Shen, P. K. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A. 2016, 4, 1579–1585.

    Google Scholar 

  188. da Silva, E. L.; Cuña, A.; Vega, M. R. O.; Radtke, C.; Machado, G.; Tancredi, N.; de Fraga Malfatti, C. Influence of the support on PtSn electrocatalysts behavior: Ethanol electro-oxidation performance and in-situ ATR-FTIRS studies. Appl. Catal. B: Environ. 2016, 193, 170–179.

    Google Scholar 

  189. Narayanamoorthy, B.; Datta, K. K. R.; Eswaramoorthy, M.; Balaji, S. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells. ACS Catal. 2014, 4, 3621–3629.

    Google Scholar 

  190. Zhang, Y.; Janyasupab, M.; Liu, C.-W.; Li, X. X.; Xu, J. Q.; Liu, C.-C. Three dimensional PtRh alloy porous nanostructures: Tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells. Adv. Funct. Mater. 2012, 22, 3570–3575.

    Google Scholar 

  191. Lu, L. F.; Chen, S. T.; Thota, S.; Wang, X. D.; Wang, Y. C.; Zou, S. H.; Fan, J.; Zhao, J. Composition controllable synthesis of PtCu nanodendrites with efficient electrocatalytic activity for methanol oxidation induced by high index surface and electronic interaction. J. Phys. Chem. C 2017, 121, 19796–19806.

    Google Scholar 

  192. Guo, L.; Huang, L.-B.; Jiang, W.-J.; Wei, Z.-D.; Wan, L.-J.; Hu, J.-S. Tuning the branches and composition of PtCu nanodendrites through underpotential deposition of Cu towards advanced electrocatalytic activity. J. Mater. Chem. A 2017, 5, 9014–9021.

    Google Scholar 

  193. Xiong, Y. L.; Ma, Y. L.; Lin, Z. Q.; Xu, Q. F.; Yan, Y. C.; Zhang, H.; Wu, J. B.; Yang, D. R. Facile synthesis of PtCu3 alloy hexapods and hollow nanoframes as highly active electrocatalysts for methanol oxidation. CrystEngComm 2016, 18, 7823–7830.

    Google Scholar 

  194. Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.

    Google Scholar 

  195. Zhang, X.; Tsang, K.-Y.; Chan, K.-Y. Electrocatalytic properties of supported platinum–cobalt nanoparticles with uniform and controlled composition. J. Electroanal. Chem. 2004, 573, 1–9

    Google Scholar 

  196. Wang, D.-W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.

    Google Scholar 

  197. Zhang, J. T.; Xia, Z. H.; Dai, L. M. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.

    Google Scholar 

  198. Wang, C.; Chi, M. F.; Wang, G. F.; van der Vliet, D.; Li, D. G.; More, K.; Wang, H. H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1–x nanoparticles. Adv. Funct. Mater. 2011, 21, 147–152.

    Google Scholar 

  199. Fu, S. F.; Zhu, C. Z.; Shi, Q. R.; Xia, H. B.; Du, D.; Lin, Y. H. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions. Nanoscale 2016, 8, 5076–5081.

    Google Scholar 

  200. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J.-Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Google Scholar 

  201. Fuentes, R. E.; Colón-Mercado, H. R.; Martínez-Rodríguez, M. J. Pt-Ir/TiC electrocatalysts for PEM fuel cell/electrolyzer process. J. Electrochem. Soc. 2014, 161, F77–F82.

    Google Scholar 

  202. Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Core–shell compositional fine structures of dealloyed PtxNi1–x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett. 2012, 12, 5423–5430.

    Google Scholar 

  203. Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419.

    Google Scholar 

  204. Rezaei, B.; Mokhtarianpour, M.; Ensafi, A. A. Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2015, 40, 6754–6762.

    Google Scholar 

  205. Park, J.; Kabiraz, M. K.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. ACS Nano 2017, 11, 10844–10851.

    Google Scholar 

  206. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C.-Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea with grant Nos. NRF-20100020209 and NRF-2017R1A2B3005682. The authors also thank to Korea University Future Research Grand for financial support. S. H. J. and H. Y. K. were supported by the NRF of Korea (No. NRF-2017R1A2B2008464).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Hoon Joo or Kwangyeol Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, N.K., Joo, J., Kwon, Hb. et al. Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Res. 11, 6111–6140 (2018). https://doi.org/10.1007/s12274-018-2161-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2161-2

Keywords

Navigation