Skip to main content
Log in

Development of a facile block copolymer method for creating hard mask patterns integrated into semiconductor manufacturing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Our goal is to develop a facile process to create patterns of inorganic oxides and metals on a substrate that can act as hard masks. These materials should have high etch contrast (compared to silicon) and so allow high-aspect-ratio, high-fidelity pattern transfer whilst being readily integrable in modern semiconductor fabrication (FAB friendly). Here, we show that ultra-small-dimension hard masks can be used to develop large areas of densely packed vertically and horizontally orientated Si nanowire arrays. The inorganic and metal hard masks (Ni, NiO, and ZnO) of different morphologies and dimensions were formed using microphase-separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) thin films by varying the BCP molecular weight, annealing temperature, and annealing solvent(s). The self-assembled polymer patterns were solvent-processed, and metal ions were included into chosen domains via a selective inclusion method. Inorganic oxide nanopatterns were subsequently developed using standard techniques. High-resolution transmission electron microscopy studies show that high-aspect-ratio pattern transfer could be affected by standard plasma etch techniques. The masking ability of the different materials was compared in order to create the highest quality uniform and smooth sidewall profiles of the Si nanowire arrays. Notably good performance of the metal mask was seen, and this could impact the use of these materials at small dimensions where conventional methods are severely limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  2. Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973–977.

    Article  Google Scholar 

  3. Trivedi, K.; Yuk, H.; Floresca, H. C.; Kim, M. J.; Hu, W. Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors. Nano Lett. 2011, 11, 1412–1417.

    Article  Google Scholar 

  4. Moonen, P. F.; Yakimets, I.; Huskens, J. Fabrication of transistors on flexible substrates: From mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 2012, 24, 5526–5541.

    Article  Google Scholar 

  5. Doerk, G. S.; Cheng, J. Y.; Singh, G.; Rettner, C. T.; Pitera, J. W.; Balakrishnan, S.; Arellano, N.; Sanders, D. P. Enabling complex nanoscale pattern customization using directed self-assembly. Nat. Commun. 2014, 5, 5805.

    Article  Google Scholar 

  6. Cheng, J. Y.; Ross, C. A.; Chan, V. Z. H.; Thomas, E. L.; Lammertink, R. G. H.; Vancso, G. J. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 2001, 13, 1174–1178.

    Article  Google Scholar 

  7. Segalman, R. A.; Hexemer, A.; Hayward, R. C.; Kramer, E. J. Ordering and melting of block copolymer spherical domains in 2 and 3 dimensions. Macromolecules 2003, 36, 3272–3288.

    Article  Google Scholar 

  8. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Fabrication of nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett. 2002, 81, 3657–3659.

    Article  Google Scholar 

  9. Lopes, W. A.; Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 2001, 414, 735–738.

    Article  Google Scholar 

  10. Ruiz, R.; Kang, H. M.; Detcheverry, F. A.; Dobisz, E.; Kercher, D. S.; Albrecht, T. R.; de Pablo, J. J.; Nealey, P. F. Density multiplication and improved lithography by directed block copolymer assembly. Science 2008, 321, 936–939.

    Article  Google Scholar 

  11. Borah, D.; Shaw, M. T.; Rasappa, S.; Farrell, R. A.; O'Mahony, C.; Faulkner, C. M.; Bosea, M.; Gleeson, P.; Holmes, J. D.; Morris, M. A. Plasma etch technologies for the development of ultra-small feature size transistor devices. J. Phys. D-Appl. Phys. 2011, 44, 174012.

    Article  Google Scholar 

  12. Farrell, R. A.; Kinahan, N. T.; Hansel, S.; Stuen, K. O.; Petkov, N.; Shaw, M. T.; West, L. E.; Djara, V.; Dunne, R. J.; Varona, O. G. et al. Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly. Nanoscale 2012, 4, 3228–3236.

    Article  Google Scholar 

  13. Ghoshal, T.; Maity, T.; Godsell, J. F.; Roy, S.; Morris, M. A. Large scale monodisperse hexagonal arrays of superparamagnetic iron oxides nanodots: A facile block copolymer inclusion method. Adv. Mater. 2012, 24, 2390–2397.

    Article  Google Scholar 

  14. Ghoshal, T.; Ntaras, C.; O'Connell, J.; Shaw, M. T.; Holmes, J. D.; Avgeropoulos, A.; Morris, M. A. Fabrication of ultra-dense sub-10 nm in-plane Si nanowire arrays by using a novel block copolymer method: Optical properties. Nanoscale 2016, 8, 2177–2187.

    Article  Google Scholar 

  15. Ghoshal, T.; Senthamaraikannan, R.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. “In situ” hard mask materials: A new methodology for creation of vertical silicon nanopillar and nanowire arrays. Nanoscale 2012, 4, 7743–7750.

    Article  Google Scholar 

  16. Ghoshal, T.; Senthamaraikannan, R.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. Fabrication of ordered, large scale, horizontally-aligned Si nanowire arrays based on an in situ hard mask block copolymer approach. Adv. Mater. 2014, 26, 1207–1216.

    Article  Google Scholar 

  17. Ghoshal, T.; Maity, T.; Senthamaraikannan, R.; Shaw, M. T.; Carolan, P.; Holmes, J. D.; Roy, S.; Morris, M. A. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: Magnetic studies and application. Sci. Rep. 2013, 3, 2772.

    Google Scholar 

  18. Hawker, C. J.; Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 2005, 309, 1200–1205.

    Article  Google Scholar 

  19. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 2003, 424, 411–414.

    Article  Google Scholar 

  20. Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 2001, 13, 1152–1155.

    Article  Google Scholar 

  21. Thurn-Albrecht, T.; Schotter, J.; Kastle, C. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 2126–2129.

    Article  Google Scholar 

  22. Cheng, J. Y.; Mayes, A. M.; Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nat. Mater. 2004, 3, 823–828.

    Article  Google Scholar 

  23. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Microdomain patterns from directional eutectic solidification and epitaxy. Nature 2000, 405, 433–437.

    Article  Google Scholar 

  24. Park, C.; Yoon, J.; Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44, 6725–6760.

    Article  Google Scholar 

  25. Zhao, J. C.; Jiang, S. C.; Ji, X. L.; An, L. J.; Jiang, B. Z. Study of the time evolution of the surface morphology of thin asymmetric diblock copolymer films under solvent vapor. Polymer 2005, 46, 6513–6521.

    Article  Google Scholar 

  26. Mokarian-Tabari, P.; Collins, T. W.; Holmes, J. D.; Morris, M. A. Cyclical “flipping” of morphology in block copolymer thin films. ACS Nano 2011, 5, 4617–4623.

    Article  Google Scholar 

  27. Fasolka, M. J.; Mayes, A. M. Block copolymer thin films: Physics and applications. Ann. Rev. Mater. Res. 2001, 31, 323–355.

    Article  Google Scholar 

  28. Gu, X. D.; Liu, Z. W.; Gunkel, I.; Chourou, S. T.; Hong, S. W.; Olynick, D. L.; Russell, T. P. High aspect ratio sub-15 nm silicon trenches from block copolymer templates. Adv. Mater. 2012, 24, 5688–5694.

    Article  Google Scholar 

  29. Ruiz, R.; Sandstrom, R. L.; Black, C. T. Induced orientational order in symmetric diblock copolymer thin films. Adv. Mater. 2007, 19, 587–591.

    Article  Google Scholar 

  30. Xu, J.; Hong, S. W.; Gu, W. Y.; Lee, K. Y.; Kuo, D. S.; Xiao, S. G.; Russell, T. P. Fabrication of silicon oxide nanodots with an areal density beyond 1 teradots inch−2. Adv. Mater. 2011, 23, 5755–5761.

    Article  Google Scholar 

  31. Fang, Q. L.; Li, X. D.; Tuan, A. P.; Perumal, J.; Kim, D. P. Direct pattern transfer using an inorganic polymer-derived silicate etch mask. J. Mater. Chem. 2011, 21, 4657–4662.

    Article  Google Scholar 

  32. Lim, K. M.; Gupta, S.; Ropp, C.; Waks, E. Development of metal etch mask by single layer lift-off for silicon nitride photonic crystals. Microelectron. Eng. 2011, 88, 994–998.

    Article  Google Scholar 

  33. Rangelow, I. W. Dry etching-based silicon micro-machining for MEMS. Vacuum 2001, 62, 279–291.

    Article  Google Scholar 

  34. Krishnamoorthy, S.; Manipaddy, K. K.; Yap, F. L. Wafer-level self-organized copolymer templates for nanolithography with sub-50 nm feature and spatial resolutions. Adv. Funct. Mater. 2011, 21, 1102–1112.

    Article  Google Scholar 

  35. Hsieh, H. Y.; Huang, S. H.; Liao, K. F.; Su, S. K.; Lai, C. H.; Chen, L. J. High-density ordered triangular Si nanopillars with sharp tips and varied slopes: One-step fabrication and excellent field emission properties. Nanotechnology 2007, 18, 505305.

    Article  Google Scholar 

  36. Sanders, D. P. Advances in patterning materials for 193 nm immersion lithography. Chem. Rev. 2010, 110, 321–360.

    Article  Google Scholar 

  37. Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027–1031.

    Article  Google Scholar 

  38. Ghoshal, T.; Shaw, M. T.; Bolger, C. T.; Holmes, J. D.; Morris, M. A. A general method for controlled nanopatterning of oxide dots: A microphase separated block copolymer platform. J. Mater. Chem. 2012, 22, 12083–12089.

    Article  Google Scholar 

  39. Wang, X. Y.; Wu, W.; Chen, Z. L.; Wang, R. H. Bauxitesupported transition metal oxides: Promising low-temperature and SO2-tolerant catalysts for selective catalytic reduction of NOx. Sci. Rep. 2015, 5, 9766.

    Article  Google Scholar 

  40. Nesbitt, H. W.; Legrand, D.; Bancroft, G. M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner. 2000, 27, 357–366.

    Article  Google Scholar 

  41. Harati, M.; Love, D.; Lau, W. M.; Ding, Z. F. Preparation of crystalline zinc oxide films by one-step electrodeposition in Reline. Mater. Lett. 2012, 89, 339–342.

    Article  Google Scholar 

  42. Peng, K. Q.; Wu, Y.; Fang, H.; Zhong, X. Y.; Xu, Y.; Zhu, J. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Int. Ed. 2005, 44, 2737–2742.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tandra Ghoshal or Michael A. Morris.

Electronic supplementary material

12274_2016_1194_MOESM1_ESM.pdf

Development of a facile block copolymer method for creating hard mask patterns integrated into semiconductor manufacturing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoshal, T., Shaw, M.T., Holmes, J.D. et al. Development of a facile block copolymer method for creating hard mask patterns integrated into semiconductor manufacturing. Nano Res. 9, 3116–3128 (2016). https://doi.org/10.1007/s12274-016-1194-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1194-7

Keywords

Navigation