Skip to main content
Log in

Nanotube photovoltaic configuration for enhancement of carrier generation and collection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report on the growth of geometric feature tuned semiconductor nanotubes on a transparent substrate through the application of an anodic aluminum oxide membrane-assisted method. Three-dimensional nanotube solar cells are developed in which semiconductor absorbers are not only used to fill the inner core of the nanotubes, but also to replace the membrane and to fill the intertube space between the nanotubes. The nanotube solar cells generate and separate carriers in three dimensions, namely, inside the cores of the nanotubes, in the intertube space between the nanotubes along the radial direction, and above the nanotubes along the axial direction. In preliminary experiments conducted to demonstrate the potential of this approach, nanotube CdS-CdTe solar cells were fabricated. CdS nanotubes with an inner diameter, wall thickness and intertube spacing of 35, 20, and 35 nm, respectively, were grown; the porosity and CdS nanotube density were 36.5% and 2.26 × 1010 nanotubes/cm2, respectively. These features of CdS nanotubes enable more efficient carrier collection because of the reduced recombination, especially in those cases in which the minority carrier lifetime is short, thus resulting in a diffusion length of less than 100 nm. Nanotube CdS-CdTe solar cells exhibit a wide and strong spectral response and quantum efficiency, indicating enhanced light absorption and carrier generation and collection. Without the benefit of an antireflection coating, the cells exhibited a wide and strong spectral response of quantum efficiency, and a short current density of 25.5 mA/cm2, an open circuit voltage of 750 mV, and a power conversion efficiency of 10.7% under 1-sun illumination. The materials and electro-optical characterizations indicated well-defined junction and interface behavior in these 3D nanotube solar cell configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oh, J.; Yuan, H.-C.; Branz, H. M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol 2012, 7, 743–748.

    Article  Google Scholar 

  2. Yu, P. C.; Tsai, C.-Y.; Chang, J.-K.; Lai, C.-C.; Chen, P.-H.; Lai, Y.-C.; Tsai, P.-T.; Li, M.-C.; Pan, H.-T.; Huang, Y.-Y. et al. 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 2013, 7, 10780–10787.

    Google Scholar 

  3. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorodpolymer solar cells. Science 2002, 295, 2425–2427.

    Article  Google Scholar 

  4. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  Google Scholar 

  5. Mallorquí, A. D.; Alarcón-Lladó, E.; Mundet, I. C.; Kiani, A.; Demaurex, B.; De Wolf, S.; Menzel, A.; Zacharias, M.; Morral, A. F. Field-effect passivation on silicon nanowire solar cells. Nano Res. 2014, 7, 673–681.

    Google Scholar 

  6. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

    Article  Google Scholar 

  7. Baxter, J. B.; Aydil, E. S. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 2005, 86, 053114.

    Article  Google Scholar 

  8. Zhang, H. M.; Yu, H.; Han, Y. H.; Liu, P. R.; Zhang, S. Q.; Wang, P.; Cheng, Y. B.; Zhao, H. J. Rutile TiO2 microspheres with exposed nano-acicular single crystals for dye-sensitized solar cells. Nano Res. 2011, 4, 938–947.

    Article  Google Scholar 

  9. Chang, J. A.; Rhee, J. H.; Im, S. H.; Lee, Y. H.; Kim, H.-J.; Seok, S. I.; Nazeeruddin, M. K.; Gratzel, M. High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Lett. 2010, 10, 2609–2612.

    Article  Google Scholar 

  10. Bwana, N. N. Effects of the morphology of the electrode nanostructures on the performance of dye-sensitized solar cells. Nano Res. 2008, 1, 483–489.

    Article  Google Scholar 

  11. Shankar, K.; Feng, X. J.; Grimes, C. A. Enhanced harvesting of red photons in nanowire solar cells: Evidence of resonance energy transfer. ACS Nano 2009, 3, 788–794.

    Article  Google Scholar 

  12. Thiyagu, S.; Devi, B. P.; Pei, Z. Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Res. 2011, 4, 1136–1143.

    Article  Google Scholar 

  13. Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 2010, 9, 239–244.

    Article  Google Scholar 

  14. Fan, Z. Y.; Razavi, H.; Do, J.-W.; Moriwaki, A.; Ergen, O.; Chueh, Y.-L.; Leu, P. W.; Ho, J. C.; Takahashi, T.; Reichertz, L. A. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 2009, 8, 648–653.

    Article  Google Scholar 

  15. Fan, Z. Y.; Ruebusch, D. J.; Rathore, A. A.; Kapadia, R.; Ergen, O.; Leu, P. W.; Javey, A. Challenges and prospects of nanopillar-based solar cells. Nano Res. 2009, 2, 829–843.

    Article  Google Scholar 

  16. Liu, P.; Singh, V. P.; Jarro, C. A.; Rajaputra, S. Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS–CdTe solar cells. Nanotechnology 2011, 22, 145304.

    Article  Google Scholar 

  17. Diggle, J. W.; Downie, T. C.; Goulding, C. Anodic oxide films on aluminum. Chem. Rev. 1969, 69, 365–405.

    Article  Google Scholar 

  18. Routkevitch, D.; Bigioni, T.; Moskovits, M.; Xu, J. M. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J. Phys. Chem. 1996, 100, 14037–14047.

    Article  Google Scholar 

  19. Piao, Y. Z.; Lim, H.; Chang, J. Y.; Lee, W.-Y.; Kim, H. Nanostructured materials prepared by use of ordered porous alumina membranes. Electrochim. Acta 2005, 50, 2997–3013.

    Article  Google Scholar 

  20. Xu, D. S.; Xu, Y. J.; Chen, D. P.; Guo, G. L.; Gui, L. L.; Tang, Y. Q. Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates. Chem. Phys. Lett. 2000, 325, 340–344.

    Article  Google Scholar 

  21. Dang, H. M.; Singh, V.; Rajaputra, S.; Guduru, S.; Chen, J. H.; Nadimpally, B. Cadmium sulfide nanowire arrays for window layer applications in solar cells. Solar Energy Mater. Solar Cells 2014, 126, 184–191.

    Article  Google Scholar 

  22. Shimizu, T.; Xie, T.; Nishikawa, J.; Shingubara, S.; Senz, S.; Gösele, U. Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template. Adv. Mater. 2007, 19, 917–920.

    Google Scholar 

  23. Li, Y.; Xu, D. S.; Zhang, Q. M.; Chen, D. P.; Huang, F. Z.; Xu, Y. J.; Guo, G. L.; Gu, Z. N. Preparation of cadmium sulfide nanowire arrays in anodic aluminum oxide templates. Chem. Mater. 1999, 11, 3433–3435.

    Article  Google Scholar 

  24. Al-Mawlawi, D.; Liu, C. Z.; Moskovits, M. Nanowires formed in anodic oxide nanotemplates. J. Mater. Res. 1994, 9, 1014–1018.

    Article  Google Scholar 

  25. Kyotani, T.; Tsai, L.-F.; Tomita, A. Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template. Chem. Mater. 1995, 7, 1427–1428.

    Article  Google Scholar 

  26. Lee, J. S.; Gu, G. H.; Kim, H.; Jeong, K. S.; Bae, J.; Suh, J. S. Growth of carbon nanotubes on anodic aluminum oxide templates: Fabrication of a tube-in-tube and linearly joined tube. Chem. Mater. 2001, 13, 2387–2391.

    Article  Google Scholar 

  27. Bae, E. J.; Choi, W. B.; Jeong, K. S.; Chu, J. U.; Park, G.-S.; Song, S.; Yoo, I. K. Selective growth of carbon nanotubes on pre-patterned porous anodic aluminum oxide. Adv. Mater. 2002, 14, 277–279.

    Article  Google Scholar 

  28. Peng, T. Y.; Yang, H. P.; Dai, K.; Pu, X. L.; Hirao, K. Fabrication and characterization of CdS nanotube arrays in porous anodic aluminum oxide templates. Chem. Phys. Lett. 2003, 379, 432–436.

    Article  Google Scholar 

  29. PV Measurements, Inc., 5757 Central Ave., Suite B, Boulder, Colorado 80301, USA.

  30. Singh, V. P.; Linam, D. L.; Dils, D.; McClure, J. C.; Lush, G. Electro-optical characterization and modeling of thin film CdS–CdTe heterojunction solar cells. Solar Energy Mater. Solar Cells 2000, 63, 445–466.

    Article  Google Scholar 

  31. del Cueto, J. A.; Pruett, J.; Cunningham, D. Stabilization of high efficiency CdTe photovoltaic modules in controlled indoor light soaking. In National Center for Photovoltaics and Solar Program Review Meeting, Dever, Colorado, USA, 2003, pp 1–4.

    Google Scholar 

  32. Wu, X. Z. High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy 2004, 77, 803–814.

    Article  Google Scholar 

  33. Hegedus, S. S.; Shafarman, W. N. Thin-film solar cells: Device measurements and analysis. Prog. Photovoltaics 2004, 12, 155–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H., Singh, V.P., Guduru, S. et al. Nanotube photovoltaic configuration for enhancement of carrier generation and collection. Nano Res. 8, 3186–3196 (2015). https://doi.org/10.1007/s12274-015-0818-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0818-7

Keywords

Navigation