Skip to main content
Log in

Harnessing the collective properties of nanoparticle ensembles for cancer theranostics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Individual inorganic nanoparticles (NPs) have been widely used in the fields of drug delivery, cancer imaging and therapy. There are still many hurdles that limit the performance of individual NPs for these applications. The utilization of highly ordered NP ensembles opens a door to resolve these problems, as a result of their new or advanced collective properties. The assembled NPs show several advantages over individual NP-based systems, such as improved cell internalization and tumor targeting, enhanced multimodality imaging capability, superior combination therapy arising from synergistic effects, possible complete clearance from the whole body by degradation of assemblies into original small NP building blocks, and so on. In this review, we discuss the potential of utilizing assembled NP ensembles for cancer imaging and treatment by taking plasmonic vesicular assemblies of Au NPs as an example. We first summarize the recent developments in the self-assembly of plasmonic vesicular structures of NPs from amphiphilic polymer-tethered NP building blocks. We further review the utilization of plasmonic vesicles of NPs for cancer imaging (e.g. multi-photon induced luminescence, photothermal, and photoacoustic imaging), and cancer therapy (e.g., photothermal therapy, and chemotherapy). Finally, we outline current challenges and our perspectives along this line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiedmann, T.; Sadhukha, T.; Hammer, B.; Panyam, J. Image-guided drug delivery in lung cancer. Drug Deliv. Transl. Res. 2012, 2, 31–44.

    Article  Google Scholar 

  2. Mitsudomi, T.; Suda, K.; Yatabe, Y. Surgery for NSCLC in the era of personalized medicine. Nat. Rev. Clin. Oncol. 2013, 10, 235–244.

    Article  Google Scholar 

  3. Devarakonda, S.; Morgensztern, D.; Govindan, R. Molecularly targeted therapies in locally advanced non-small-cell lung cancer. Clin. Lung Cancer 2013, 14, 467–472.

    Article  Google Scholar 

  4. Govindan, R.; Bogart, J.; Vokes, E. E. Locally advanced non-small cell lung cancer: The past, present, and future. J. Thorac. Oncol. 2008, 3, 917–928.

    Article  Google Scholar 

  5. Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275–284.

    Article  Google Scholar 

  6. Sukumar, U.; Bhushan, B.; Dubey, P.; Matai, I.; Sachdev, A.; Packirisamy, G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int. Nano Lett. 2013, 3, 1–17.

    Article  Google Scholar 

  7. Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Delivery Rev. 2010, 62, 1052–1063.

    Article  Google Scholar 

  8. Chan, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

    Article  Google Scholar 

  9. Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.

    Article  Google Scholar 

  10. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Article  Google Scholar 

  11. Chen, J. Y.; Yang, M. X.; Zhang, Q. A.; Cho, E. C.; Cobley, C. M.; Kim, C.; Glaus, C.; Wang, L. H. V.; Welch, M. J.; Xia, Y. N. Gold nanocages: A novel class of multifunctional nanomaterials for theranostic applications. Adv. Funct. Mater. 2010, 20, 3684–3694.

    Article  Google Scholar 

  12. Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small 2011, 7, 169–183.

    Article  Google Scholar 

  13. Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

    Article  Google Scholar 

  14. Wang, Y. C.; Black, K. C. L.; Luehmann, H.; Li, W. Y.; Zhang, Y.; Cai, X.; Wan, D. H.; Liu, S. Y.; Li, M.; Kim, P.; et al. A. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013, 7, 2068–2077.

    Article  Google Scholar 

  15. Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.

    Article  Google Scholar 

  16. Nie, Z.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25.

    Article  Google Scholar 

  17. Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111, 3736–3827.

    Article  Google Scholar 

  18. Glotzer, S. C.; Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 2007, 6, 557–562.

    Article  Google Scholar 

  19. Bai, F.; Wang, D.; Huo, Z.; Chen, W.; Liu, L.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 6650–6653.

    Article  Google Scholar 

  20. Zhuang, J.; Wu, H.; Yang, Y.; Cao, Y. C. Supercrystalline colloidal particles from artificial atoms. J. Am. Chem. Soc. 2007, 129, 14166–14167.

    Article  Google Scholar 

  21. Wang, L. B.; Xu, L. G.; Kuang, H.; Xu, C. L.; Kotov, N. A. Dynamic nanoparticle assemblies. Acc. Chem. Res. 2012, 45, 1916–1926.

    Article  Google Scholar 

  22. Gong, J.; Li, G.; Tang, Z. Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today 2012, 7, 564–585.

    Article  Google Scholar 

  23. Hao, X.; Shang, X.; Wu, J.; Shan, Y.; Cai, M.; Jiang, J.; Huang, Z.; Tang, Z.; Wang, H. Single-particle tracking of hepatitis B virus-like vesicle entry into cells. Small 2011, 7, 1212–1218.

    Article  Google Scholar 

  24. Lin, J.; Wang, S.; Huang, P.; Wang, Z.; Chen, S.; Niu, G.; Li, W.; He, J.; Cui, D.; Lu, G.; et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329.

    Article  Google Scholar 

  25. He, J.; Huang, X.; Li, Y.-C.; Liu, Y.; Babu, T.; Aronova, M. A.; Wang, S.; Lu, Z.; Chen, X.; Nie, Z. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. J. Am. Chem. Soc. 2013, 135, 7974–7984.

    Article  Google Scholar 

  26. He, J.; Liu, Y.; Babu, T.; Wei, Z.; Nie, Z. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J. Am. Chem. Soc. 2012, 134, 11342–11345.

    Article  Google Scholar 

  27. He, J.; Wei, Z.; Wang, L.; Tomova, Z.; Babu, T.; Wang, C.; Han, X.; Fourkas, J. T.; Nie, Z. Hydrodynamically driven self-assembly of giant vesicles of metal nanoparticles for remote-controlled release. Angew. Chem. Int. Ed. 2013, 52, 2463–2468.

    Article  Google Scholar 

  28. Chou, L. Y. T.; Zagorovsky, K.; Chan, W. C. W. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 2014, 9, 148–155.

    Article  Google Scholar 

  29. Huang, P.; Lin, J.; Li, W.; Rong, P.; Wang, Z.; Wang, S.; Wang, X.; Sun, X.; Aronova, M.; Niu, G.; et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chem. Int. Ed. 2013, 52, 13958–13964.

    Article  Google Scholar 

  30. Guo, X.; Szoka, F. C. Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Acc. Chem. Res. 2003, 36, 335–341.

    Article  Google Scholar 

  31. Sawant, R. R.; Torchilin, V. P. Liposomes as “smart” pharmaceutical nanocarriers. Soft Matter 2010, 6, 4026–4044.

    Article  Google Scholar 

  32. Percec, V.; Wilson, D. A.; Leowanawat, P.; Wilson, C. J.; Hughes, A. D.; Kaucher, M. S.; Hammer, D. A.; Levine, D. H.; Lim, A. J.; Bates, F. S.; et al. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 2010, 328, 1009–1014.

    Article  Google Scholar 

  33. Zhang, X.; Rehm, S.; Safont-Sempere, M. M.; Würthner, F. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems. Nat. Chem. 2009, 1, 623–629.

    Article  Google Scholar 

  34. Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C. M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Polymersomes: Tough vesicles made from diblock copolymers. Science 1999, 284, 1143–1146.

    Article  Google Scholar 

  35. Huang, H. Y.; Remsen, E. E.; Kowalewski, T.; Wooley, K. L. Nanocages derived from shell cross-linked micelle templates. J. Am. Chem. Soc. 1999, 121, 3805–3806.

    Article  Google Scholar 

  36. Nie, Z.; Fave, D.; Kumacheva E.; Zou, S.; Walker, G. C.; Rubinstein, M. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609–614.

    Article  Google Scholar 

  37. Nikolic, M. S.; Olsson, C.; Salcher, A.; Kornowski, A.; Rank, A.; Schubert, R.; Frömsdorf, A.; Weller, H.; Förster, S. Micelle and vesicle formation of amphiphilic nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 2752–2754.

    Article  Google Scholar 

  38. Zubarev, E. R.; Xu, J.; Sayyad, A.; Gibson, J. D. Amphiphilicity-driven organization of nanoparticles into discrete assemblies. J. Am. Chem. Soc. 2006, 128, 15098–15099.

    Article  Google Scholar 

  39. Hu, J.; Wu, T.; Zhang, G.; Liu, S. Efficient synthesis of single gold nanoparticle hybrid amphiphilic triblock copolymers and their controlled self-assembly. J. Am. Chem. Soc. 2012, 134, 7624–7627.

    Article  Google Scholar 

  40. Song, J.; Cheng, L.; Liu, A.; Yin, J.; Kuang, M.; Duan, H. Plasmonic vesicles of amphiphilic gold nanocrystals self-assembly and external-stimuli-triggered destruction. J. Am. Chem. Soc. 2011, 133, 10760–10763.

    Article  Google Scholar 

  41. Guo, Y.; Harirchian-Saei, S.; Izumi, C. M. S.; Moffitt, M. G. Block copolymer mimetic self-assembly of inorganic nanoparticles. ACS Nano 2011, 5, 3309–3318.

    Article  Google Scholar 

  42. Wang, B.; Li, B.; Dong, B.; Zhao, B.; Li, C. Y. Homo- and hetero-particle clusters formed by Janus nanoparticles with bicompartment polymer brushes. Macromolecules 2010, 43, 9234–9238.

    Article  Google Scholar 

  43. Andala, D. M.; Shin, S. H. R.; Lee, H.-Y. Bishop, K. J. M. Templated synthesis of amphiphilic nanoparticles at the liquid-liquid interface. ACS Nano 2012, 6, 1044–1050.

    Article  Google Scholar 

  44. Wei, K.; Li, J.; Liu, J.; Chen, G.; Jiang, M. Reversible vesicles of supramolecular hybrid nanoparticles. Soft Matter 2012, 8, 3300–3303.

    Article  Google Scholar 

  45. Liu, Y.; Li, Y.; He, J.; Duelge, K. J.; Lu, Z.; Nie, Z. Entropy-driven pattern formation of hybrid vesicular assemblies made from molecular and nanoparticle amphiphiles. J. Am. Chem. Soc. 2014, 136, 2602–2610.

    Article  Google Scholar 

  46. Song, J.; Zhou, J.; Duan, H. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J. Am. Chem. Soc. 2012, 134, 13458–13469.

    Article  Google Scholar 

  47. Niikura, K.; Iyo, N.; Higuchi, T.; Nishio, T.; Jinnai, H.; Fujitani, N.; Ijiro, K. Gold nanoparticles coated with semi-fluorinated oligo(ethylene glycol) produce sub-100 nm nanoparticle vesicles without templates. J. Am. Chem. Soc. 2012, 134, 7632–7635.

    Article  Google Scholar 

  48. Song, J.; Pu, L.; Zhou, J.; Duan, B.; Duan, H. Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 2013, 7, 9947–9960.

    Article  Google Scholar 

  49. Llevot, A.; Astruc, D. Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem. Soc. Rev. 2012, 41, 242–257.

    Article  Google Scholar 

  50. Erathodiyil, N.; Ying, J. Y. Functionalization of inorganic nanoparticles for bioimaging applications. Acc. Chem. Res. 2011, 44, 925–935.

    Article  Google Scholar 

  51. Cheng, Y.; Samia, A. C.; Li, J.; Kenney, M. E.; Resnick, A.; Burda, C. Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface. Langmuir 2010, 26, 2248–2255.

    Article  Google Scholar 

  52. Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Gold nanoparticles in delivery applications. Adv. Drug Delivery Rev. 2008, 60, 1307–1315.

    Article  Google Scholar 

  53. He, J.; Zhang, P.; Babu, T.; Liu, Y.; Gong, J.; Nie, Z. Near-infrared light-responsive vesicles of Au nanoflowers. Chem. Commun. 2013, 49, 576–578.

    Article  Google Scholar 

  54. Niikura, K.; Iyo, N.; Matsuo, Y.; Mitomo, H.; Ijiro, K. Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl. Mater. Inter. 2013, 5, 3900–3907.

    Article  Google Scholar 

  55. Song, J.; Fang, Z.; Wang, C.; Zhou, J.; Duan, B.; Pu, Lu.; Duan, H. Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery. Nanoscale 2013, 5, 5816–5824.

    Article  Google Scholar 

  56. Amstad, E.; Kohlbrecher, J.; Müller, E.; Schweizer, T.; Textor, M.; Reimhult, E. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett. 2011, 11, 1664–1670.

    Article  Google Scholar 

  57. Gopalakrishnan, G.; Danelon, C.; Izewska, P.; Prummer, M.; Bolinger, P.; Geissbühler, I.; Demurtas, D.; Dubochet, J.; Vogel, H. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew. Chem. Int. Ed. 2006, 45, 5478–5483.

    Article  Google Scholar 

  58. Al-Jamal, W. T.; Al-Jamal, K. T.; Tian, B.; Lacerda, L.; Bomans, P. H.; Frederik, P. M.; Kostarelos, K. Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano 2008, 2, 408–418.

    Article  Google Scholar 

  59. Niikura, K.; Iyo, N.; Higuchi, T.; Nishio, T.; Jinnai, H.; Fujitani, N.; Ijiro, K. Gold nanoparticles coated with semi-fluorinated oligo(ethylene glycol) produce sub-100 nm nanoparticle vesicles without templates. J. Am. Chem. Soc. 2012, 134, 7632–7635.

    Article  Google Scholar 

  60. Bian, T.; Shang, L.; Yu, H.; Perez, M. T.; Wu, L.-Z.; Tung, C.-H.; Nie, Z.; Tang, Z.; Zhang, T. Spontaneous organization of inorganic nanoparticles into nanovesicles triggered by UV light. Adv. Mater. 2014, in press, DOI: 10.1002/adma.201401182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yin, JJ. & Nie, Z. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res. 7, 1719–1730 (2014). https://doi.org/10.1007/s12274-014-0541-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0541-9

Keywords

Navigation