Skip to main content
Log in

Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Incorporation of a bulk heterojunction is an effective strategy to enhance charge separation and carrier transport in solar cells, and has been adopted in polymeric and colloidal nanoparticle solar cells to improve energy conversion efficiency. Here, we report bulk heterojunction solar cells based on one-dimensional structures, fabricated by mixing CdS nanowires (CdS NWs) and single-walled carbon nanotubes (CNTs) to form a composite film with mutually interpenetrating networks through a simple solution-filtration process. Within the composite, the CNT network boosts charge separation by extracting holes generated from CdS NWs and also forms the transport path for carrier collection by the external electrode. At an optimized CNT loading of about 5 wt.%, the CdS NW/CNT bulk heterojunction solar cells showed three orders of magnitude increase in photocurrent and cell efficiency compared to a cell with the same materials arranged in a stacked layer configuration with a plain heterojunction. External quantum efficiency and photoluminescence studies revealed the efficient charge transfer process from photoexcited CdS NWs to CNTs in the mixed form. Our results indicate that the bulk heterojunction structure strategy can be extended to semiconductor NWs and CNTs and can greatly improve solar cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527–546.

    Article  CAS  Google Scholar 

  2. Kislyuk, V. V.; Dimitriev, O. P. Nanorods and nanotubes for solar cells. J. Nanosci. Nanotechnol. 2008, 8, 131–148.

    Article  CAS  Google Scholar 

  3. Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–888.

    Article  CAS  Google Scholar 

  4. Tang, J. Y.; Huo, Z. Y.; Brittman, S.; Gao, H. W.; Yang, P. D. Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 2011, 6, 568–572.

    Article  CAS  Google Scholar 

  5. Garnett, E. C.; Yang, P. D. Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 2008, 130, 9224–9225.

    Article  CAS  Google Scholar 

  6. Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148–154.

    Article  CAS  Google Scholar 

  7. Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282.

    Article  Google Scholar 

  8. Lu, Y. R.; Lal, A. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett. 2010, 10, 4651–4656.

    Article  CAS  Google Scholar 

  9. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218.

    Article  CAS  Google Scholar 

  10. Sun, C.; Mathews, N.; Zheng, M. R.; Sow, C. H.; Wong, L. H.; Mhaisalkar, S. G. Aligned tin oxide nanonets for high-performance transistors. J. Phys. Chem. C 2010, 114, 1331–1336.

    Article  CAS  Google Scholar 

  11. Ponzoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S. Z.; Xu, N. S.; Ding, Y.; Wang, Z. L. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 2006, 88, 203101.

    Article  Google Scholar 

  12. De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.

    Article  CAS  Google Scholar 

  13. Chen, P. C.; Shen, G. Z.; Shi, Y.; Chen, H. T.; Zhou, C. W. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/ single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403–4411.

    Article  CAS  Google Scholar 

  14. Hu, L. B.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L. F.; Cui, Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. USA 2009, 106, 21490–21494.

    Article  CAS  Google Scholar 

  15. Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

    Article  CAS  Google Scholar 

  16. Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L. B.; Gruner, G. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 2006, 88, 233506.

    Article  Google Scholar 

  17. Steinhagen, C.; Akhavan, V. A.; Goodfellow, B. W.; Panthani, M. G.; Harris, J. T.; Holmberg, V. C.; Korgel, B. A. Solution-liquid-solid synthesis of CuInSe2 nanowires and their implementation in photovoltaic devices. ACS Appl. Mater. Interf. 2011, 3, 1781–1785.

    Article  CAS  Google Scholar 

  18. Dennler, G.; Scharber, M. C.; Brabec, C. J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338.

    Article  CAS  Google Scholar 

  19. Barkhouse, D.; Debnath, R.; Kramer, I. J.; Zhitomirsky, D.; Pattantyus-Abraham, A. G.; Levina, L.; Etgar, L.; Gratzel, M.; Sargent, E. H. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 2011, 23, 3134–3138.

    Article  CAS  Google Scholar 

  20. Lee, J. C.; Lee, W.; Han, S. H.; Kim, T. G.; Sung, Y. M. Synthesis of hybrid solar cells using CdS nanowire array grown on conductive glass substrates. Electrochem. Commun. 2009, 11, 231–234.

    Article  CAS  Google Scholar 

  21. Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007, 111, 13280–13287.

    Article  CAS  Google Scholar 

  22. Ye, Y.; Dai, Y.; Dai, L.; Shi, Z. J.; Liu, N.; Wang, F.; Fu, L.; Peng, R. M.; Wen, X. N.; Chen, Z. J. et al. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes. ACS Appl. Mater. Interf. 2010, 2, 3406–3410.

    Article  CAS  Google Scholar 

  23. Wei, J. Q.; Jia, Y.; Shu, Q. K.; Gu, Z. Y.; Wang, K. L.; Zhuang, D. M.; Zhang, G.; Wang, Z. C.; Luo, J. B.; Cao, A. Y. et al. Double-walled carbon nanotube solar cells. Nano Lett. 2007, 7, 2317–2321.

    Article  CAS  Google Scholar 

  24. Liang, C. W.; Roth, S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett. 2008, 8, 1809–1812.

    Article  CAS  Google Scholar 

  25. Zhang, L. H.; Jia, Y.; Wang, S. S.; Li, Z.; Ji, C. Y.; Wei, J. Q.; Zhu, H. W.; Wang, K. L.; Wu, D. H.; Shi, E. Z. et al. Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett. 2010, 10, 3583–3589.

    Article  CAS  Google Scholar 

  26. Wang, Q. Q.; Xu, G.; Han, G. R. Solvothermal synthesis and characterization of uniform CdS nanowires in high yield. J. Solid State Chem. 2005, 178, 2680–2685.

    Article  CAS  Google Scholar 

  27. Li, Z.; Jia, Y.; Wei, J. Q.; Wang, K. L.; Shu, Q. K.; Gui, X. C.; Zhu, H. W.; Cao, A. Y.; Wu, D. H. Large area, highly transparent carbon nanotube spiderwebs for energy harvesting. J. Mater. Chem. 2010, 20, 7236–7240.

    Article  CAS  Google Scholar 

  28. Kongkanand, A.; Dominguez, R. M.; Kamat, P. V. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 2007, 7, 676–680.

    Article  CAS  Google Scholar 

  29. Jang, Y. H.; Xin, X. K.; Byun, M.; Jang, Y. J.; Lin, Z. Q.; Kim, D. H. An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode. Nano Lett. 2012, 12, 479–485.

    Article  CAS  Google Scholar 

  30. Sanjines, R.; Abad, M. D.; Vaju, C.; Smajda, R.; Mionic, M.; Magrez, A. Electrical properties and applications of carbon based nanocomposite materials: An overview. Surf. Coat. Tech. 2011, 206, 727–733.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anyuan Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Wei, J., Li, P. et al. Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes. Nano Res. 5, 595–604 (2012). https://doi.org/10.1007/s12274-012-0245-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0245-y

Keywords

Navigation