Skip to main content

Advertisement

Log in

Apical Polarization of SVCT2 in Apical Radial Glial Cells and Progenitors During Brain Development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

During brain development, radial glial (RG) cells and the different progenitor subtypes are characterized by their bipolar morphology that includes an ovoid cell body and one or two radial processes that span across the developing cerebral wall. Different cells transport the reduced form of vitamin C, ascorbic acid (AA), using sodium-dependent ascorbic acid cotransporters (SVCT1 or SVCT2). SVCT2 is mainly expressed in the nervous system (CNS); however, its localization in the central nervous system during embryonic development along with the mechanism by which RG take up vitamin C and its intracellular effects is unknown. Thus, we sought to determine the expression and localization of SVCT2 during CNS development. SVCT2 is preferentially localized in the RG body at the ventricular edge of the cortex during the neurogenic stage (E12 to E17). The localization of SVCT2 overexpressed by in utero electroporation of E14 embryos is consistent with ventricular polarization. A similar distribution pattern was observed in human brain tissue sections at 9 weeks of gestation; however, SVCT2 immunoreaction was also detected in the inner and outer subventricular zone (SVZ). Finally, we used C17.2 neural stem cell line, J1ES cells and primary cell cultures derived from the brain cortex to analyze functional SVCT2 activity, AA effects in progenitor cells bipolar morphology, and SVCT2 expression levels in different culture conditions. Our results indicate that basal RG cells and apical intermediate and subapical progenitors are the main cell types expressing SVCT2 in the lissencephalic brain. SVCT2 was mainly detected in the apical region of the ventricular zone cells, contacting the cerebrospinal fluid. In gyrencephalic brains, SVCT2 was also detected in progenitor cells located in the inner and outer SVZ. Finally, we defined that AA has a strong radializing (bipolar morphology) effect in progenitor cells in culture and the differentiation condition modulates SVCT2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

DHA:

Dehydroascorbic acid

DMEM:

Dulbecco’s modified Eagle medium

FBS:

Fetal bovine serum

DOG:

deoxyglucose

GFAP:

Glial fibrillary acidic protein

GLUT:

Glucose transporter

IMDM:

Iscove’s Modified Dulbecco’s medium

NSC:

Neural stem cell

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate–buffered saline

RG:

Radial glia

SVCT:

Sodium-dependent ascorbic acid cotransporters

SDS:

Sodium dodecyl sulfate

VZ:

Ventricular zone.

References

  1. Gray GE, Sanes JR (1992) Lineage of radial glia in the chicken optic tectum. Development 114:271–283

    CAS  PubMed  Google Scholar 

  2. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    Article  CAS  PubMed  Google Scholar 

  3. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173

    CAS  PubMed  Google Scholar 

  4. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    Article  CAS  PubMed  Google Scholar 

  5. Gotz M, Hartfuss E, Malatesta P (2002) Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res Bull 57:777–788

    Article  PubMed  Google Scholar 

  6. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890

    Article  CAS  PubMed  Google Scholar 

  7. Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:357–369

    Article  CAS  PubMed  Google Scholar 

  8. Bentivoglio M, Mazzarello P (1999) The history of radial glia. Brain Res Bull 49:305–315

    Article  CAS  PubMed  Google Scholar 

  9. Leprince P, Chanas-Sacre G (2001) Regulation of radial glia phenotype. Prog Brain Res 132:13–22

    Article  CAS  PubMed  Google Scholar 

  10. Hartfuss E, Galli R, Heins N, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30

    Article  CAS  PubMed  Google Scholar 

  11. Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4:143–150

    Article  CAS  PubMed  Google Scholar 

  12. Nadarajah B, Alifragis P, Wong RO, Parnavelas JG (2002) Ventricle-directed migration in the developing cerebral cortex. Nat Neurosci 5:218–224

    Article  CAS  PubMed  Google Scholar 

  13. Campbell K (2005) Cortical neuron specification: it has its time and place. Neuron 46:373–376

    Article  CAS  PubMed  Google Scholar 

  14. Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8:438–450

    Article  CAS  PubMed  Google Scholar 

  15. Noctor SC, Palmer SL, Hasling T, Juliano SL (1999) Interference with the development of early generated neocortex results in disruption of radial glia and abnormal formation of neocortical layers. Cereb Cortex 9:121–136

    Article  CAS  PubMed  Google Scholar 

  16. Corbin JG, Gaiano N, Juliano SL, Poluch S, Stancik E, Haydar TF (2008) Regulation of neural progenitor cell development in the nervous system. J Neurochem 106:2272–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Keilani S, Sugaya K (2008) Reelin induces a radial glial phenotype in human neural progenitor cells by activation of notch-1. BMC Dev Biol 8:69

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  19. Paridaen JT, Huttner WB (2014) Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 15:351–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tyler WA, Haydar TF (2013) Multiplex genetic fate mapping reveals a novel route of neocortical neurogenesis, which is altered in the Ts65Dn mouse model of Down syndrome. J Neurosci 33:5106–5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699

    Article  CAS  PubMed  Google Scholar 

  22. Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    Article  CAS  PubMed  Google Scholar 

  23. Reillo I, de Juan RC, Garcia-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21:1674–1694

    Article  PubMed  Google Scholar 

  24. Garcia-Krauss A, Ferrada L, Astuya A, Salazar K, Cisternas P, Martinez F, Ramirez E, Nualart F (2015) Dehydroascorbic acid promotes cell death in neurons under oxidative stress: a protective role for astrocytes. Mol Neurobiol

  25. Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23:209–216

    Article  CAS  PubMed  Google Scholar 

  26. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6:71–79

    Article  CAS  PubMed  Google Scholar 

  27. Nualart F, Mack L, Garcia A, Cisternas P, Bongarzone ER, Heitzer M, Jara N, Martinez F, Ferrada L, Espinoza F, Baeza V, Salazar K (2014) Vitamin C transporters, recycling and the bystander effect in the nervous system: SVCT2 versus gluts. J Stem Cell Res Ther 4:209

    PubMed  PubMed Central  Google Scholar 

  28. Ulloa V, Garcia-Robles M, Martinez F, Salazar K, Reinicke K, Perez F, Godoy DF, Godoy AS, Nualart F (2013) Human choroid plexus papilloma cells efficiently transport glucose and vitamin C. J Neurochem 127:403–414

    Article  CAS  PubMed  Google Scholar 

  29. Spector R, Johanson CE (2014) The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain. Mol Brain 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang H, Dutta B, Huang W, Devoe LD, Leibach FH, Ganapathy V, Prasad PD (1999) Human Na(+)-dependent vitamin C transporter 1 (hSVCT1): primary structure, functional characteristics and evidence for a non-functional splice variant. Biochim Biophys Acta 1461:1–9

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Mackenzie B, Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (2000) Human vitamin C (L-ascorbic acid) transporter SVCT1. Biochem Biophys Res Commun 267:488–494

    Article  CAS  PubMed  Google Scholar 

  32. Faaland CA, Race JE, Ricken G, Warner FJ, Williams WJ, Holtzman EJ (1998) Molecular characterization of two novel transporters from human and mouse kidney and from LLC-PK1 cells reveals a novel conserved family that is homologous to bacterial and Aspergillus nucleobase transporters. Biochim Biophys Acta 1442:353–360

    Article  CAS  PubMed  Google Scholar 

  33. Daruwala R, Song J, Koh WS, Rumsey SC, Levine M (1999) Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett 460:480–484

    Article  CAS  PubMed  Google Scholar 

  34. Rajan DP, Huang W, Dutta B, Devoe LD, Leibach FH, Ganapathy V, Prasad PD (1999) Human placental sodium-dependent vitamin C transporter (SVCT2): molecular cloning and transport function. Biochem Biophys Res Commun 262:762–768

    Article  CAS  PubMed  Google Scholar 

  35. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA (1999) A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 399:70–75

    Article  CAS  PubMed  Google Scholar 

  36. Liang WJ, Johnson D, Jarvis SM (2001) Vitamin C transport systems of mammalian cells. Mol Membr Biol 18:87–95

    Article  CAS  PubMed  Google Scholar 

  37. Castro M, Caprile T, Astuya A, Millan C, Reinicke K, Vera JC, Vasquez O, Aguayo LG, Nualart F (2001) High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J Neurochem 78:815–823

    Article  CAS  PubMed  Google Scholar 

  38. Castro MA, Pozo M, Cortes C, Garcia Mde L, Concha II, Nualart F (2007) Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes. J Neurochem 102:773–782

    Article  CAS  PubMed  Google Scholar 

  39. Garcia Mde L, Salazar K, Millan C, Rodriguez F, Montecinos H, Caprile T, Silva C, Cortes C, Reinicke K, Vera JC, Aguayo LG, Olate J, Molina B, Nualart F (2005) Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia 50:32–47

    Article  PubMed  Google Scholar 

  40. Qiu S, Li L, Weeber EJ, May JM (2007) Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res 85:1046–1056

    Article  CAS  PubMed  Google Scholar 

  41. Mun GH, Kim MJ, Lee JH, Kim HJ, Chung YH, Chung YB, Kang JS, Hwang YI, Oh SH, Kim JG, Hwang DH, Shin DH, Lee WJ (2006) Immunohistochemical study of the distribution of sodium-dependent vitamin C transporters in adult rat brain. J Neurosci Res 83:919–928

    Article  CAS  PubMed  Google Scholar 

  42. Nualart F, Salazar K, Oyarce K, Cisternas P, Jara N, Silva-Alvarez C, Pastor P, Martinez F, Garcia A, Garcia-Robles Mde L, Tapia JC (2012) Typical and atypical stem cells in the brain, vitamin C effect and neuropathology. Biol Res 45:243–256

    Article  CAS  PubMed  Google Scholar 

  43. Pastor P, Cisternas P, Salazar K, Silva-Alvarez C, Oyarce K, Jara N, Espinoza F, Martinez AD, Nualart F (2013) SVCT2 vitamin C transporter expression in progenitor cells of the postnatal neurogenic niche. Front Cell Neurosci 7:119

    Article  PubMed  PubMed Central  Google Scholar 

  44. Salazar K, Martinez M, Ulloa V, Bertinat R, Martinez F, Jara N, Espinoza F, Bongarzone ER et al (2015) SVCT2 overexpression in neuroblastoma cells induces cellular branching that is associated with ERK signaling. Mol Neurobiol

  45. Rose RC (1988) Transport of ascorbic acid and other water-soluble vitamins. Biochim Biophys Acta 947:335–366

    Article  CAS  PubMed  Google Scholar 

  46. Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13:1007–1024

    CAS  PubMed  Google Scholar 

  47. Padayatty SJ, Levine M (2001) New insights into the physiology and pharmacology of vitamin C. CMAJ 164:353–355

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hediger MA (2002) New view at C. Nat Med 8:445–446

    Article  CAS  PubMed  Google Scholar 

  49. Lee JY, Chang MY, Park CH, Kim HY, Kim JH, Son H, Lee YS, Lee SH (2003) Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res 73:156–165

    Article  CAS  PubMed  Google Scholar 

  50. Kratzing CC, Kelly JD, Oelrichs BA (1982) Ascorbic acid in neural tissues. J Neurochem 39:625–627

    Article  CAS  PubMed  Google Scholar 

  51. Milby K, Oke A, Adams RN (1982) Detailed mapping of ascorbate distribution in rat brain. Neurosci Lett 28:169–174

    Article  CAS  PubMed  Google Scholar 

  52. Terpstra M, Gruetter R (2004) 1H NMR detection of vitamin C in human brain in vivo. Magn Reson Med 51:225–229

    Article  CAS  PubMed  Google Scholar 

  53. Kratzing CC, Kelly JD, Kratzing JE (1985) Ascorbic acid in fetal rat brain. J Neurochem 44:1623–1624

    Article  CAS  PubMed  Google Scholar 

  54. Caprile T, Salazar K, Astuya A, Cisternas P, Silva-Alvarez C, Montecinos H, Millan C, de Los Angeles Garcia M, Nualart F (2009) The Na+-dependent L-ascorbic acid transporter SVCT2 expressed in brainstem cells, neurons, and neuroblastoma cells is inhibited by flavonoids. J Neurochem 108:563–577

    Article  CAS  PubMed  Google Scholar 

  55. Nualart F, Godoy A, Reinicke K (1999) Expression of the hexose transporters GLUT1 and GLUT2 during the early development of the human brain. Brain Res 824:97–104

    Article  CAS  PubMed  Google Scholar 

  56. Salazar K, Cerda G, Martinez F, Sarmiento JM, Gonzalez C, Rodriguez F, Garcia-Robles M, Tapia JC, Cifuentes M, Nualart F (2014) SVCT2 transporter expression is post-natally induced in cortical neurons and its function is regulated by its short isoform. J Neurochem 130:693–706

    Article  CAS  PubMed  Google Scholar 

  57. Rio C, Rieff HI, Qi P, Khurana TS, Corfas G (1997) erbB receptors Neuregulin and play a critical role in neuronal migration. Neuron 19:39–50

    Article  CAS  PubMed  Google Scholar 

  58. Hatten ME (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol 100:384–396

    Article  CAS  PubMed  Google Scholar 

  59. Colombo JA, Napp MI (1996) In vitro induction of radial-like cells by leptomeningeal and cortical astroglial conditioned media. Effect of protease inhibitors. Int J Dev Neurosci 14:489–496

    Article  CAS  PubMed  Google Scholar 

  60. Liour SS, Yu RK (2003) Differentiation of radial glia-like cells from embryonic stem cells. Glia 42:109–117

    Article  PubMed  Google Scholar 

  61. Nualart FJ, Rivas CI, Montecinos VP, Godoy AS, Guaiquil VH, Golde DW, Vera JC (2003) Recycling of vitamin C by a bystander effect. J Biol Chem 278:10128–10133

    Article  CAS  PubMed  Google Scholar 

  62. Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    Article  CAS  PubMed  Google Scholar 

  63. Yamasaki M, Yamada K, Furuya S, Mitoma J, Hirabayashi Y, Watanabe M (2001) 3-phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J Neurosci 21:7691–7704

    CAS  PubMed  Google Scholar 

  64. Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51

    Article  CAS  PubMed  Google Scholar 

  65. Song J, Kwon O, Chen S, Daruwala R, Eck P, Park JB, Levine M (2002) Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and glucose. J Biol Chem 277:15252–15260

    Article  CAS  PubMed  Google Scholar 

  66. Chanas-Sacre G, Thiry M, Pirard S, Rogister B, Moonen G, Mbebi C, Verdiere-Sahuque M, Leprince P (2000) A 295-kDA intermediate filament-associated protein in radial glia and developing muscle cells in vivo and in vitro. Dev Dyn 219:514–525

    Article  CAS  PubMed  Google Scholar 

  67. Liour SS, Kraemer SA, Dinkins MB, Su CY, Yanagisawa M, Yu RK (2006) Further characterization of embryonic stem cell-derived radial glial cells. Glia 53:43–56

    Article  PubMed  Google Scholar 

  68. Goodman T, Hajihosseini MK (2015) Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci 9:387

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164

    Article  CAS  PubMed  Google Scholar 

  70. Boyer JC, Campbell CE, Sigurdson WJ, Kuo SM (2005) Polarized localization of vitamin C transporters, SVCT1 and SVCT2, in epithelial cells. Biochem Biophys Res Commun 334:150–156

    Article  CAS  PubMed  Google Scholar 

  71. Subramanian VS, Marchant JS, Reidling JC, Said HM (2008) N-glycosylation is required for Na+-dependent vitamin C transporter functionality. Biochem Biophys Res Commun 374:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Varma S, Campbell CE, Kuo SM (2008) Functional role of conserved transmembrane segment 1 residues in human sodium-dependent vitamin C transporters. Biochemistry 47:2952–2960

    Article  CAS  PubMed  Google Scholar 

  73. Varma S, Sobey K, Campbell CE, Kuo SM (2009) Hierarchal contribution of N- and C-terminal sequences to the differential localization of homologous sodium-dependent vitamin C transporters, SVCT1 and SVCT2, in epithelial cells. Biochemistry 48:2969–2980

    Article  CAS  PubMed  Google Scholar 

  74. Jin SN, Mun GH, Lee JH, Oh CS, Kim J, Chung YH, Kang JS, Kim JG, Hwang DH, Hwang YI, Shin DH, Lee WJ (2005) Immunohistochemical study on the distribution of sodium-dependent vitamin C transporters in the respiratory system of adult rat. Microsc Res Tech 68:360–367

    Article  CAS  PubMed  Google Scholar 

  75. Wu H, Wu Y, Ai Z, Yang L, Gao Y, Du J, Guo Z, Zhang Y (2014) Vitamin C enhances Nanog expression via activation of the JAK/STAT signaling pathway. Stem Cells 32:166–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fondo Nacional de Ciencia y Tecnología (FONDECYT 1140477 FN, 11130529 to CSA, 11140405 to KS, 11150678 to FM) and Conicyt-PIA CMA BIO BIO ECM-12 to FN. We thank Dra. Marjet Heitzer for critically reading and editing the manuscript and Ms. Ximena Koch for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nualart.

Ethics declarations

Ethical Statement

All animals were handled in strict accordance with the Animal Welfare Assurance (permit number 2010101A), and all animal work was approved by the appropriate Ethics and Animal Care and Use Committee of the University of Concepcion, Chile.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Álvarez, C., Salazar, K., Cisternas, P. et al. Apical Polarization of SVCT2 in Apical Radial Glial Cells and Progenitors During Brain Development. Mol Neurobiol 54, 5449–5467 (2017). https://doi.org/10.1007/s12035-016-0081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0081-2

Keywords

Navigation