Skip to main content
Log in

Radial Glial Cells: New Views on Old Questions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Radial glial cells (RGC) are at the center of brain development in vertebrates, acting as progenitors for neurons and macroglia (oligodendrocytes and astrocytes) and as guides for migration of neurons from the ventricular surface to their final positions in the brain. These cells originate from neuroepithelial cells (NEC) from which they inherit their epithelial features and polarized morphology, with processes extending from the ventricular to the pial surface of the embryonic cerebrum. We have learnt a great deal since the first descriptions of these cells at the end of the nineteenth century. However, there are still questions regarding how and when NEC transform into RGC or about the function of intermediate filaments such as glial fibrillary acidic protein (GFAP) in RGCs and their dynamics during neurogenesis. For example, it is not clear why RGCs in primates, including humans, express GFAP at the onset of cortical neurogenesis while in rodents it is expressed when it is essentially complete. Based on an ultrastructural analysis of GFAP expression and cell morphology of dividing progenitors in the developing neocortex of the macaque monkey, we show that RGCs become the main progenitor in the developing cerebrum by the start of neurogenesis, as all dividing cells show glial features such as GFAP expression and lack of tight junctions. Also, our data suggest that RGCs retract their apical process during mitosis. We discuss our findings in the context of the role and molecular characteristics of RGCs in the vertebrate brain, their differences with NECs and their dynamic behavior during the process of neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10(10):724–735. https://doi.org/10.1038/nrn2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mori T, Buffo A, Götz M (2005) The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr Top Dev Biol 69:67–99. https://doi.org/10.1016/s0070-2153(05)69004-7

    Article  CAS  PubMed  Google Scholar 

  3. Breunig JJ, Haydar TF, Rakic P (2011) Neural stem cells: historical perspective and future prospects. Neuron 70(4):614–625. https://doi.org/10.1016/j.neuron.2011.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20(15):5764–5774. https://doi.org/10.1523/jneurosci.20-15-05764.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huttner WB, Kosodo Y (2005) Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr Opin Cell Biol 17(6):648–657. https://doi.org/10.1016/j.ceb.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  6. Sun Y, Goderie SK, Temple S (2005) Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells. Neuron 45(6):873–886. https://doi.org/10.1016/j.neuron.2005.01.045

    Article  CAS  PubMed  Google Scholar 

  7. Alvarez-Buylla A, Kriegstein A (2013) Neural stem cells among glia. Patterning and cell type specification in the developing CNS and PNS. Academic Press, Cambridge, pp 685–705. https://doi.org/10.1016/b978-0-12-397265-1.00079-4

    Book  Google Scholar 

  8. His W (1889) Die Neuroblasten und deren Entstehung im embrionalen Mark. Abh Kgl Sachs Ges Wissensch Math Phys Kl 15:311–372

    Google Scholar 

  9. Koelliker A (1879) Entwicklungsgeschichte des Menschen und der hoeheren Thiere. W. Engelmann, Leipzig

    Google Scholar 

  10. Magini G (1888) Nevroglia e cellule nervose cerebrali nei feti, vol 1. Atti del Dodicesimo Congresso della Associazione Medica Italiana. Tipografia Fratelli Fusi, Pavia

    Google Scholar 

  11. Golgi C (1885) Sulla fina anatomia degli organi centrali del sistema nervoso. Tipografia di Stefano Calderini e Figlio, Reggio Emilia

    Google Scholar 

  12. Lenhossek M (1893) Der feinere bau des Nervensystems in Lichte neuester Forschung. In: Kornfeld H (ed) Fischer’s Medicinische Buchhandlung. Fischer, Berlin

    Google Scholar 

  13. Ramón y Cajal S (1909) Histologie du système nerveux de l’homme et des vertébrés. A. Maloine, Paris

    Google Scholar 

  14. Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145(1):61–83. https://doi.org/10.1002/cne.901450105

    Article  CAS  PubMed  Google Scholar 

  15. Choi BH, Lapham LW (1978) Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res 148(2):295–311. https://doi.org/10.1016/0006-8993(78)90721-7

    Article  CAS  PubMed  Google Scholar 

  16. Levitt P, Cooper ML, Rakic P (1983) Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. Dev Biol 96(2):472–484. https://doi.org/10.1016/0012-1606(83)90184-7

    Article  CAS  PubMed  Google Scholar 

  17. Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193(3):815–840. https://doi.org/10.1002/cne.901930316

    Article  CAS  PubMed  Google Scholar 

  18. Bittman K, Owens DF, Kriegstein AR, LoTurco JJ (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J Neurosci 17(18):7037–7044. https://doi.org/10.1523/jneurosci.17-18-07037.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hockfield S, McKay RD (1985) Identification of major cell classes in the developing mammalian nervous system. J Neurosci 5(12):3310–3328. https://doi.org/10.1523/jneurosci.05-12-03310.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585–595. https://doi.org/10.1016/0092-8674(90)90662-x

    Article  CAS  PubMed  Google Scholar 

  21. Edwards MA, Yamamoto M, Caviness VS Jr (1990) Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 36(1):121–144. https://doi.org/10.1016/0306-4522(90)90356-9

    Article  CAS  PubMed  Google Scholar 

  22. Misson JP, Edwards MA, Yamamoto M, Caviness VS Jr (1988) Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res Dev Brain Res 44(1):95–108. https://doi.org/10.1016/0165-3806(88)90121-6

    Article  CAS  PubMed  Google Scholar 

  23. Park D, Xiang AP, Zhang L, Mao FF, Walton NM, Choi SS, Lahn BT (2009) The radial glia antibody RC2 recognizes a protein encoded by Nestin. Biochem Biophys Res Commun 382(3):588–592. https://doi.org/10.1016/j.bbrc.2009.03.074

    Article  CAS  PubMed  Google Scholar 

  24. Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12(4):895–908. https://doi.org/10.1016/0896-6273(94)90341-7

    Article  CAS  PubMed  Google Scholar 

  25. Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997) Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci 17(23):9212–9219. https://doi.org/10.1523/jneurosci.17-23-09212.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akimoto J, Itoh H, Miwa T, Ikeda K (1993) Immunohistochemical study of glutamine synthetase expression in early glial development. Brain Res Dev Brain Res 72(1):9–14. https://doi.org/10.1016/0165-3806(93)90154-3

    Article  CAS  PubMed  Google Scholar 

  27. Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90(2):435–447. https://doi.org/10.1083/jcb.90.2.435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tucker RP, Brunso-Bechtold JK, Jenrath DA, Khan NA, Poss PM, Sweatt AJ, Xu Y (1994) Cellular origins of tenascin in the developing nervous system. Perspect Dev Neurobiol 2(1):89–99. https://doi.org/10.1080/0907676x.1994.9961226

    Article  CAS  PubMed  Google Scholar 

  29. Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl) 156(2):115–152. https://doi.org/10.1007/bf00300010

    Article  CAS  Google Scholar 

  30. Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: boulder committee revisited. Nat Rev Neurosci 9(2):110–122. https://doi.org/10.1038/nrn2252

    Article  CAS  PubMed  Google Scholar 

  31. Hinds JW, Ruffett TL (1971) Cell proliferation in the neural tube: an electron microscopic and golgi analysis in the mouse cerebral vesicle. Z Zellforsch Mikrosk Anat 115(2):226–264. https://doi.org/10.1007/bf00391127

    Article  CAS  PubMed  Google Scholar 

  32. Seymour RM, Berry M (1975) Scanning and transmission electron microscope studies of interkinetic nuclear migration in the cerebral vesicles of the rat. J Comp Neurol 160(1):105–125. https://doi.org/10.1002/cne.901600107

    Article  CAS  PubMed  Google Scholar 

  33. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409(6821):714–720. https://doi.org/10.1038/35055553

    Article  CAS  PubMed  Google Scholar 

  34. Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31(5):727–741. https://doi.org/10.1016/s0896-6273(01)00420-2

    Article  CAS  PubMed  Google Scholar 

  35. Subramanian L, Bershteyn M, Paredes MF, Kriegstein AR (2017) Dynamic behaviour of human neuroepithelial cells in the developing forebrain. Nat Commun 8:14167. https://doi.org/10.1038/ncomms14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bignami A, Eng LF, Dahl D, Uyeda CT (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43(2):429–435. https://doi.org/10.1016/0006-8993(72)90398-8

    Article  CAS  PubMed  Google Scholar 

  37. Antanitus DS, Choi BH, Lapham LW (1976) The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence. Brain Res 103(3):613–616. https://doi.org/10.1016/0006-8993(76)90464-9

    Article  CAS  PubMed  Google Scholar 

  38. Sancho-Tello M, Vallés S, Montoliu C, Renau-Piqueras J, Guerri C (1995) Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia 15(2):157–166. https://doi.org/10.1002/glia.440150208

    Article  CAS  PubMed  Google Scholar 

  39. Bignami A, Dahl D (1989) Vimentin-GFAP transition in primary dissociated cultures of rat embryo spinal cord. Int J Dev Neurosci 7(4):343–357. https://doi.org/10.1016/0736-5748(89)90056-7

    Article  CAS  PubMed  Google Scholar 

  40. Morozov YM, Ayoub AE, Rakic P (2006) Translocation of synaptically connected interneurons across the dentate gyrus of the early postnatal rat hippocampus. J Neurosci 26(19):5017–5027. https://doi.org/10.1523/jneurosci.0272-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morozov YM, Koch M, Rakic P, Horvath TL (2017) Cannabinoid type 1 receptor-containing axons innervate NPY/AgRP neurons in the mouse arcuate nucleus. Mol Metab 6(4):374–381. https://doi.org/10.1016/j.molmet.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morozov YM, Sun YY, Kuan CY, Rakic P (2016) Alteration of SLP2-like immunolabeling in mitochondria signifies early cellular damage in developing and adult mouse brain. Eur J Neurosci 43(2):245–257. https://doi.org/10.1111/ejn.13124

    Article  PubMed  Google Scholar 

  43. Molnár Z, Clowry GJ, Šestan N, Alzu’bi A, Bakken T, Hevner RF, Hüppi PS, Kostović I, Rakic P, Anton ES, Edwards D, Garcez P, Hoerder-Suabedissen A, Kriegstein A (2019) New insights into the development of the human cerebral cortex. J Anat 235(3):432–451. https://doi.org/10.1111/joa.13055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25(1):247–251. https://doi.org/10.1523/jneurosci.2899-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aaku-Saraste E, Hellwig A, Huttner WB (1996) Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure–remodeling of the neuroepithelium prior to neurogenesis. Dev Biol 180(2):664–679. https://doi.org/10.1006/dbio.1996.0336

    Article  CAS  PubMed  Google Scholar 

  46. Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176. https://doi.org/10.1126/science.3291116

    Article  CAS  PubMed  Google Scholar 

  47. Dahl D, Bignami A (1973) Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates. Brain Res 61:279–293. https://doi.org/10.1016/0006-8993(73)90533-7

    Article  CAS  PubMed  Google Scholar 

  48. Martinez-De Luna RI, Ku RY, Aruck AM, Santiago F, Viczian AS, San Mauro D, Zuber ME (2017) Muller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus. Dev Biol 426(2):219–235. https://doi.org/10.1016/j.ydbio.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  49. Docampo-Seara A, Santos-Duran GN, Candal E, Rodriguez Diaz MA (2019) Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula). Brain Struct Funct 224(1):33–56. https://doi.org/10.1007/s00429-018-1758-2

    Article  CAS  PubMed  Google Scholar 

  50. Arochena M, Anadón R, Díaz-Regueira SM (2004) Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. J Comp Neurol 469(3):413–436. https://doi.org/10.1002/cne.11021

    Article  CAS  PubMed  Google Scholar 

  51. Marcus RC, Easter SS Jr (1995) Expression of glial fibrillary acidic protein and its relation to tract formation in embryonic zebrafish (Danio rerio). J Comp Neurol 359(3):365–381. https://doi.org/10.1002/cne.903590302

    Article  CAS  PubMed  Google Scholar 

  52. Johnson K, Barragan J, Bashiruddin S, Smith CJ, Tyrrell C, Parsons MJ, Doris R, Kucenas S, Downes GB, Velez CM, Schneider C, Sakai C, Pathak N, Anderson K, Stein R, Devoto SH, Mumm JS, Barresi MJ (2016) Gfap-positive radial glial cells are an essential progenitor population for later-born neurons and glia in the zebrafish spinal cord. Glia 64(7):1170–1189. https://doi.org/10.1002/glia.22990

    Article  PubMed  PubMed Central  Google Scholar 

  53. Monzon-Mayor M, Yanes C, Ghandour MS, de Barry J, Gombos G (1990) Glial fibrillary acidic protein and vimentin immunohistochemistry in the developing and adult midbrain of the lizard Gallotia galloti. J Comp Neurol 295(4):569–579. https://doi.org/10.1002/cne.902950406

    Article  CAS  PubMed  Google Scholar 

  54. Yanes C, Monzon-Mayor M, Ghandour MS, de Barry J, Gombos G (1990) Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies. J Comp Neurol 295(4):559–568. https://doi.org/10.1002/cne.902950405

    Article  CAS  PubMed  Google Scholar 

  55. Kálmán M, Pritz MB (2001) Glial fibrillary acidic protein-immunopositive structures in the brain of a Crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. J Comp Neurol 431(4):460–480. https://doi.org/10.1002/1096-9861(20010319)431:4%3c460::aid-cne1083%3e3.3.co;2-8

    Article  PubMed  Google Scholar 

  56. Tapscott SJ, Bennett GS, Toyama Y, Kleinbart F, Holtzer H (1981) Intermediate filament proteins in the developing chick spinal cord. Dev Biol 86(1):40–54. https://doi.org/10.1016/0012-1606(81)90313-4

    Article  CAS  PubMed  Google Scholar 

  57. Naujoks-Manteuffel C, Roth G (1989) Astroglial cells in a salamander brain (Salamandra salamandra) as compared to mammals: a glial fibrillary acidic protein immunohistochemistry study. Brain Res 487(2):397–401. https://doi.org/10.1016/0006-8993(89)90849-4

    Article  CAS  PubMed  Google Scholar 

  58. Onteniente B, Kimura H, Maeda T (1983) Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J Comp Neurol 215(4):427–436. https://doi.org/10.1002/cne.902150407

    Article  CAS  PubMed  Google Scholar 

  59. Messenger NJ, Warner AE (1989) The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo. Development 107(1):43–54

    Article  CAS  Google Scholar 

  60. Weissman T, Noctor SC, Clinton BK, Honig LS, Kriegstein AR (2003) Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb Cortex 13(6):550–559. https://doi.org/10.1093/cercor/13.6.550

    Article  PubMed  Google Scholar 

  61. Verkhratsky A, Ho MS, Parpura V (2019) Evolution of neuroglia. Adv Exp Med Biol 1175:15–44. https://doi.org/10.1007/978-981-13-9913-8_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bettini S, Lazzari M, Franceschini V (2019) Molecular markers in the study of non-model vertebrates: their significant contributions to the current knowledge of tetrapod glial cells and fish olfactory neurons. Results Probl Cell Differ 68:355–377. https://doi.org/10.1007/978-3-030-23459-1_15

    Article  CAS  PubMed  Google Scholar 

  63. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121(1):4–27. https://doi.org/10.1111/j.1471-4159.2012.07664.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bovolenta P, Liem RK, Mason CA (1987) Glial filament protein expression in astroglia in the mouse visual pathway. Brain Res 430(1):113–126. https://doi.org/10.1016/0165-3806(87)90181-7

    Article  CAS  PubMed  Google Scholar 

  65. Bovolenta P, Liem RK, Mason CA (1984) Development of cerebellar astroglia: transitions in form and cytoskeletal content. Dev Biol 102(1):248–259. https://doi.org/10.1016/0012-1606(84)90189-1

    Article  CAS  PubMed  Google Scholar 

  66. Landry CF, Ivy GO, Brown IR (1990) Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed by in situ hybridization. J Neurosci Res 25(2):194–203. https://doi.org/10.1002/jnr.490250207

    Article  CAS  PubMed  Google Scholar 

  67. Nitsos I, Rees S (1990) The effects of intrauterine growth retardation on the development of neuroglia in fetal guinea pigs. An immunohistochemical and an ultrastructural study. Int J Dev Neurosci 8(3):233–244. https://doi.org/10.1016/0736-5748(90)90029-2

    Article  CAS  PubMed  Google Scholar 

  68. Voigt T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289(1):74–88. https://doi.org/10.1002/cne.902890106

    Article  CAS  PubMed  Google Scholar 

  69. Raff MC, Fields KL, Hakomori SI, Mirsky R, Pruss RM, Winter J (1979) Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res 174(2):283–308. https://doi.org/10.1016/0006-8993(79)90851-5

    Article  CAS  PubMed  Google Scholar 

  70. Clarke SR, Shetty AK, Bradley JL, Turner DA (1994) Reactive astrocytes express the embryonic intermediate neurofilament nestin. NeuroReport 5(15):1885–1888. https://doi.org/10.1097/00001756-199410000-00011

    Article  CAS  PubMed  Google Scholar 

  71. Messing A, Brenner M (2020) GFAP at 50. ASN Neuro 12:1759091420949680. https://doi.org/10.1177/1759091420949680

    Article  PubMed  PubMed Central  Google Scholar 

  72. de Vitry F, Picart R, Jacque C, Tixier-Vidal A (1981) Glial fibrillary acidic protein. A cellular marker of tanycytes in the mouse hypothalamus. Dev Neurosci 4(6):457–460. https://doi.org/10.1159/000112813

    Article  PubMed  Google Scholar 

  73. Lazarides E (1982) Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem 51:219–250. https://doi.org/10.1146/annurev.bi.51.070182.001251

    Article  CAS  PubMed  Google Scholar 

  74. Yen SH, Fields KL (1981) Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system. J Cell Biol 88(1):115–126. https://doi.org/10.1083/jcb.88.1.115

    Article  CAS  PubMed  Google Scholar 

  75. Bignami A (1984) Glial fibrillary acidic (GFA) protein in Müller glia. Immunofluorescence study of the goldfish retina. Brain Res 300(1):175–178. https://doi.org/10.1016/0006-8993(84)91355-6

    Article  CAS  PubMed  Google Scholar 

  76. Brenner M, Kisseberth WC, Su Y, Besnard F, Messing A (1994) GFAP promoter directs astrocyte-specific expression in transgenic mice. J Neurosci 14(3 Pt 1):1030–1037. https://doi.org/10.1523/jneurosci.14-03-01030.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A (2001) hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31(2):85–94. https://doi.org/10.1002/gene.10008

    Article  CAS  PubMed  Google Scholar 

  78. Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T, Itohara S (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14(1):29–41. https://doi.org/10.1016/0896-6273(95)90238-4

    Article  CAS  PubMed  Google Scholar 

  79. Pekny M, Levéen P, Pekna M, Eliasson C, Berthold CH, Westermark B, Betsholtz C (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. Embo J 14(8):1590–1598

    Article  CAS  Google Scholar 

  80. Liedtke W, Edelmann W, Bieri PL, Chiu FC, Cowan NJ, Kucherlapati R, Raine CS (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17(4):607–615. https://doi.org/10.1016/s0896-6273(00)80194-4

    Article  CAS  PubMed  Google Scholar 

  81. McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY, Messing A (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci USA 93(13):6361–6366. https://doi.org/10.1073/pnas.93.13.6361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16(3):587–599. https://doi.org/10.1016/s0896-6273(00)80078-1

    Article  CAS  PubMed  Google Scholar 

  83. Galou M, Colucci-Guyon E, Ensergueix D, Ridet JL, Gimenez y Ribotta M, Privat A, Babinet C, Dupouey P (1996) Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice. J Cell Biol 133(4):853–863. https://doi.org/10.1083/jcb.133.4.853

    Article  CAS  PubMed  Google Scholar 

  84. Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallén A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH, Frisén J (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145(3):503–514. https://doi.org/10.1083/jcb.145.3.503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dieriks BV, Dean JM, Aronica E, Waldvogel HJ, Faull RLM, Curtis MA (2018) Differential fatty acid-binding protein expression in persistent radial glia in the human and sheep subventricular zone. Dev Neurosci 40(2):145–161. https://doi.org/10.1159/000487633

    Article  CAS  PubMed  Google Scholar 

  86. Salouci M, Antoine N, Shikh Al Sook MK, Piret J, Mignon Y, Kirschvink N, Gabriel A (2014) Developmental profiles of GFAP-positive astrocytes in sheep cerebellum. Vet Res Commun 38(4):279–285. https://doi.org/10.1007/s11259-014-9614-1

    Article  PubMed  Google Scholar 

  87. Rana S (2019) Structural changes during fetal development of the gyrified brain: clues on determinants of cortical folding. School of Clinical Sciences, Monash University, Clayton

    Google Scholar 

  88. Rigoglio NN, Barreto RS, Favaron PO, Jacob JC, Smith LC, Gastal MO, Gastal EL, Miglino MA (2017) Central nervous system and vertebrae development in horses: a chronological study with differential temporal expression of nestin and GFAP. J Mol Neurosci 61(1):61–78. https://doi.org/10.1007/s12031-016-0805-9

    Article  CAS  PubMed  Google Scholar 

  89. Granger B, Tekaia F, Le Sourd AM, Rakic P, Bourgeois JP (1995) Tempo of neurogenesis and synaptogenesis in the primate cingulate mesocortex: comparison with the neocortex. J Comp Neurol 360(2):363–376. https://doi.org/10.1002/cne.903600212

    Article  CAS  PubMed  Google Scholar 

  90. Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183(4123):425–427. https://doi.org/10.1126/science.183.4123.425

    Article  CAS  PubMed  Google Scholar 

  91. Levitt P, Cooper ML, Rakic P (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci 1(1):27–39. https://doi.org/10.1523/jneurosci.01-01-00027.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17(2):375–412. https://doi.org/10.1083/jcb.17.2.375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Decker RS, Friend DS (1974) Assembly of gap junctions during amphibian neurulation. J Cell Biol 62(1):32–47. https://doi.org/10.1083/jcb.62.1.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Revel JP, Brown SS (1976) Cell junctions in development, with particular reference to the neural tube. Cold Spring Harb Symp Quant Biol 40:443–455. https://doi.org/10.1101/sqb.1976.040.01.042

    Article  CAS  PubMed  Google Scholar 

  95. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40(3):648–677. https://doi.org/10.1083/jcb.40.3.648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33(3):C7-c12. https://doi.org/10.1083/jcb.33.3.c7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nadarajah B, Jones AM, Evans WH, Parnavelas JG (1997) Differential expression of connexins during neocortical development and neuronal circuit formation. J Neurosci 17(9):3096–3111. https://doi.org/10.1523/jneurosci.17-09-03096.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Duckett S (1968) The germinal layer of the growing human brain during early fetal life. Anat Rec 161(2):231–245. https://doi.org/10.1002/ar.1091610208

    Article  CAS  PubMed  Google Scholar 

  99. Shoukimas GM, Hinds JW (1978) The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis. J Comp Neurol 179(4):795–830. https://doi.org/10.1002/cne.901790407

    Article  CAS  PubMed  Google Scholar 

  100. Koelliker A (1896) Handbuch der Gewebelehre des Menschen, 6th edn. W. Engelmann, Leipzig

    Google Scholar 

  101. Sauer FC (1935) Mitosis in the neural tube. J Comp Neurol 62:377–405

    Article  Google Scholar 

  102. Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99(Pt 4):691–709

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Fujita H, Fujita S (1963) Electron microscopic studies on neuroblast differentiation in the central nervous system of domestic fowl. Z Zellforsch Mikrosk Anat 60:463–478. https://doi.org/10.1007/bf00336619

    Article  CAS  PubMed  Google Scholar 

  104. Stensaas LJ, Stensaas SS (1968) An electron microscope study of cells in the matrix and intermediate laminae of the cerebral hemisphere of the 45 mm rabbit embryo. Z Zellforsch Mikrosk Anat 91(3):341–365. https://doi.org/10.1007/bf00440763

    Article  CAS  PubMed  Google Scholar 

  105. Hinds JW, Hinds PL (1974) Early ganglion cell differentiation in the mouse retina: an electron microscopic analysis utilizing serial sections. Dev Biol 37(2):381–416. https://doi.org/10.1016/0012-1606(74)90156-0

    Article  CAS  PubMed  Google Scholar 

  106. Das T, Payer B, Cayouette M, Harris WA (2003) In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina. Neuron 37(4):597–609. https://doi.org/10.1016/s0896-6273(03)00066-7

    Article  CAS  PubMed  Google Scholar 

  107. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22(8):3161–3173. https://doi.org/10.1523/jneurosci.22-08-03161.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cayouette M, Raff M (2003) The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 130(11):2329–2339. https://doi.org/10.1242/dev.00446

    Article  CAS  PubMed  Google Scholar 

  109. Tanenbaum ME, Stern-Ginossar N, Weissman JS, Vale RD (2015) Regulation of mRNA translation during mitosis. eLife 4:e07957. https://doi.org/10.7554/eLife.07957

    Article  PubMed Central  Google Scholar 

  110. Rauch P, Heine P, Goettgens B, Käs JA (2013) Different modes of growth cone collapse in NG 108–15 cells. Eur Biophys J 42(8):591–605. https://doi.org/10.1007/s00249-013-0907-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rutka JT, Smith SL (1993) Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenicity. Cancer Res 53(15):3624–3631

    CAS  PubMed  Google Scholar 

  112. Toda M, Miura M, Asou H, Sugiyama I, Kawase T, Uyemura K (1999) Suppression of glial tumor growth by expression of glial fibrillary acidic protein. Neurochem Res 24(2):339–343. https://doi.org/10.1023/a:1022538810581

    Article  CAS  PubMed  Google Scholar 

  113. Toda M, Miura M, Asou H, Toya S, Uyemura K (1994) Cell growth suppression of astrocytoma C6 cells by glial fibrillary acidic protein cDNA transfection. J Neurochem 63(5):1975–1978. https://doi.org/10.1046/j.1471-4159.1994.63051975.x

    Article  CAS  PubMed  Google Scholar 

  114. Pekny M, Eliasson C, Chien CL, Kindblom LG, Liem R, Hamberger A, Betsholtz C (1998) GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp Cell Res 239(2):332–343. https://doi.org/10.1006/excr.1997.3922

    Article  CAS  PubMed  Google Scholar 

  115. Inagaki M, Nakamura Y, Takeda M, Nishimura T, Inagaki N (1994) Glial fibrillary acidic protein: dynamic property and regulation by phosphorylation. Brain Pathol 4(3):239–243. https://doi.org/10.1111/j.1750-3639.1994.tb00839.x

    Article  CAS  PubMed  Google Scholar 

  116. Yasui Y, Amano M, Nagata K, Inagaki N, Nakamura H, Saya H, Kaibuchi K, Inagaki M (1998) Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Cell Biol 143(5):1249–1258. https://doi.org/10.1083/jcb.143.5.1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yoshida T, Tomozawa Y, Arisato T, Okamoto Y, Hirano H, Nakagawa M (2007) The functional alteration of mutant GFAP depends on the location of the domain: morphological and functional studies using astrocytoma-derived cells. J Hum Genet 52(4):362–369. https://doi.org/10.1007/s10038-007-0124-7

    Article  CAS  PubMed  Google Scholar 

  118. Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443. https://doi.org/10.1016/j.pneurobio.2011.01.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work supported in part by the National Institutes of Health NIDA grant DA023999. We thank Dr. Alvaro Duque, Yale Department of Neuroscience and MacBrainResource which is supported by MH113257 to Alvaro Duque at Yale Medical School.

Author information

Authors and Affiliations

Authors

Contributions

YMM designed and perform experiments. JIA, NM and YM analyzed and interpreted the data. JIA and PR wrote the manuscript. All authors discussed the final manuscript.

Corresponding author

Correspondence to Pasko Rakic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Experiments were performed with approval from the ethics committee and IACUC at Yale University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Prof. Vladimir Parpura.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (PDF 525 kb)

Supplementary Information 2 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arellano, J.I., Morozov, Y.M., Micali, N. et al. Radial Glial Cells: New Views on Old Questions. Neurochem Res 46, 2512–2524 (2021). https://doi.org/10.1007/s11064-021-03296-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03296-z

Keywords

Navigation