Skip to main content
Log in

Paliperidone Protects SH-SY5Y Cells Against MK-801-Induced Neuronal Damage Through Inhibition of Ca2+ Influx and Regulation of SIRT1/miR-134 Signal Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Schizophrenia is a serious psychotic disease. Recently, increasing evidences support that neurodegeneration occurs in the brain of schizophrenia patients with progressive morphological changes. Paliperidone, an atypical antipsychotic drug, could attenuate psychotic symptom and protect neurons from different stressors. However, the underlying mechanisms are largely unknown. In this study, we used SH-SY5Y cells to evaluate the neuroprotective capability of paliperidone against the neurotoxicity induced by N-methyl-d-aspartate receptor antagonist, MK-801. And, we also explored the possible molecular mechanism. Neurotoxicity of 100 μM MK-801, which reduced the cell viability, was diminished by 100 μM paliperidone using MTT and LDH assays (both p < 0.05). Analysis with Hoechst 33342/PI double staining demonstrated that exposure to MK-801 (100 μM) for 24 h led to the death of 30 % of cultured cells (p < 0.05). Moreover, the patch clamp technique was employed to detect voltage calcium channel changes; the results showed that paliperidone effectively blocked the Ca2+ influx through inhibiting the voltage-gated calcium channels (p < 0.05). Furthermore, paliperidone significantly reversed MK-801 induced increase of SIRT1 and decrease of miR-134 expression (both p < 0.05). Finally, SIRT1 inhibitor nicotinamide blocked MK-801 injury effects and suppressed miR-134 expression. Taken together, our results demonstrated that paliperidone could protect SH-SY5Y cells against MK-801 induced neurotoxicity via inhibition of Ca2+ influx and regulation of SIRT1/miR-134 pathway, providing a promising and potential therapeutic target for schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MK-801:

Dizocilpine

LDH:

Lactate dehydrogenase

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide

RT-PCR:

Real-time polymerase chain reaction

CREB:

cAMP-response element binding protein

miR-134:

MicroRNA-134

SIRT1:

Sirtuin 1

NMDA:

N-Methyl-d-aspartic acid

NCS-1:

Neuronal calcium sensor-1

CaV2.1:

Calcium channel, voltage-dependent, P/Q type, alpha 1A subunit

TTX:

Tetrodotoxin

IRS-2:

Insulin receptor substrates-2

Erk:

Extracellular signal-regulated kinase 1/2

MEK:

Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase

IGF-1:

Insulin-like growth factor 1

References

  1. Rajji TK, Miranda D, Mulsant BH (2014) Cognition, function, and disability in patients with schizophrenia: a review of longitudinal studies. Can J Psychiatry 59(1):13–17

    PubMed  PubMed Central  Google Scholar 

  2. Sarkar S, Grover S (2013) Antipsychotics in children and adolescents with schizophrenia: a systematic review and meta-analysis. Indian J Pharmacol 45(5):439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kempton MJ, Stahl D, Williams SC, DeLisi LE (2010) Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophr Res 120(1–3):54–62

    Article  PubMed  Google Scholar 

  4. Vita A, De Peri L, Deste G, Sacchetti E (2012) Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry 20(2):116

    Google Scholar 

  5. Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TG, McEwen S, Addington J et al (2015) Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry 77(2):147–157

    Article  PubMed  PubMed Central  Google Scholar 

  6. Na KS, Kim CE, Kim YS, Lee JI, Han WS, Kang UG, Park DH, Kim B et al (2013) Effectiveness of paliperidone extended-release for patients with schizophrenia: focus on subjective improvement. Hum Psychopharmacol 28(2):107–116

    Article  CAS  PubMed  Google Scholar 

  7. Huang MW, Yang TT, Ten PR, Su PW, Wu BJ, Chan CH, Lan TH, Liu IC et al (2012) Effects of paliperidone extended release on the symptoms and functioning of schizophrenia. BMC Clin Pharmacol 12(1):1472–6904

    Article  Google Scholar 

  8. Singh J, Robb A, Vijapurkar U, Nuamah I, Hough D (2011) A randomized, double-blind study of paliperidone extended-release in treatment of acute schizophrenia in adolescents. Biol Psychiatry 70(12):1179–1187

    Article  CAS  PubMed  Google Scholar 

  9. Sliwa JK, Bossie CA, Ma YW, Alphs L (2011) Effects of acute paliperidone palmitate treatment in subjects with schizophrenia recently treated with oral risperidone. Schizophr Res 132(1):28–34

    Article  PubMed  Google Scholar 

  10. Yang MC, Lung FW (2011) Neuroprotection of paliperidone on SH-SY5Y cells against beta-amyloid peptide(25–35), N-methyl-4-phenylpyridinium ion, and hydrogen peroxide-induced cell death. Psychopharmacology 217(3):397–410

    Article  CAS  PubMed  Google Scholar 

  11. Gasso P, Mas S, Molina O, Bernardo M, Lafuente A, Parellada E (2012) Neurotoxic/neuroprotective activity of haloperidol, risperidone and paliperidone in neuroblastoma cells. Prog Neuropsychopharmacol Biol Psychiatry 36(1):71–77

    Article  CAS  PubMed  Google Scholar 

  12. Berliocchi L, Bano D, Nicotera P (2005) Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci 360(1464):2255–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duchen MR (2012) Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch 464(1):111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82(1):24–45

    Article  CAS  PubMed  Google Scholar 

  15. Yan J, Leal K, Magupalli VG, Nanou E, Martinez GQ, Scheuer T, Catterall WA (2014) Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation. Mol Cell Neurosci 63:124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hubbard BP, Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35(3):146–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rehan L, Laszki-Szczachor K, Sobieszczanska M, Polak-Jonkisz D (2014) SIRT1 and NAD as regulators of ageing. Life Sci 105(1–2):1–6

    Article  CAS  PubMed  Google Scholar 

  18. Paraiso AF, Mendes KL, Santos SH (2013) Brain activation of SIRT1: role in neuropathology. Mol Neurobiol 48(3):681–689

    Article  CAS  PubMed  Google Scholar 

  19. Tang BL, Chua CE (2008) SIRT1 and neuronal diseases. Mol Aspects Med 29(3):187–200

    Article  CAS  PubMed  Google Scholar 

  20. Donmez G (2012) The effects of SIRT1 on Alzheimer’s disease models. Int J Alzheimers Dis 509529(10):3

    Google Scholar 

  21. Kishi T, Fukuo Y, Kitajima T, Okochi T, Yamanouchi Y, Kinoshita Y, Kawashima K, Inada T et al (2011) SIRT1 gene, schizophrenia and bipolar disorder in the Japanese population: an association study. Genes Brain Behav 10(3):257–263

    Article  CAS  PubMed  Google Scholar 

  22. Numakawa T, Richards M, Adachi N, Kishi S, Kunugi H, Hashido K (2011) MicroRNA function and neurotrophin BDNF. Neurochem Int 59(5):551–558

    Article  CAS  PubMed  Google Scholar 

  23. Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ (2011) Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69(2):180–187

    Article  CAS  PubMed  Google Scholar 

  24. Wen L, Chen Z, Zhang F, Cui X, Sun W, Geary GG, Wang Y, Johnson DA et al (2013) Ca2+/calmodulin-dependent protein kinase kinase beta phosphorylation of Sirtuin 1 in endothelium is atheroprotective. Proc Natl Acad Sci U S A 110(26):10

    Article  Google Scholar 

  25. Peng L, Zhu D, Feng X, Dong H, Yue Q, Zhang J, Gao Q, Hao J et al (2013) Paliperidone protects prefrontal cortical neurons from damages caused by MK-801 via Akt1/GSK3beta signaling pathway. Schizophr Res 147(1):14–23

    Article  PubMed  Google Scholar 

  26. Ono T, Hashimoto E, Ukai W, Ishii T, Saito T (2010) The role of neural stem cells for in vitro models of schizophrenia: neuroprotection via Akt/ERK signal regulation. Schizophr Res 122(1–3):239–247

    Article  PubMed  Google Scholar 

  27. Klimaviciusa L, Safiulina D, Kaasik A, Klusa V, Zharkovsky A (2008) The effects of glutamate receptor antagonists on cerebellar granule cell survival and development. Neurotoxicology 29(1):101–108

    Article  CAS  PubMed  Google Scholar 

  28. Sheng L, Leshchyns’ka I, Sytnyk V (2013) Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Sign 11(94):11–94

    Google Scholar 

  29. Frank CA (2014) How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity. Front Cell Neurosci 8 (40)

  30. Matute C (2010) Calcium dyshomeostasis in white matter pathology. Cell Calcium 47(2):150–157

    Article  CAS  PubMed  Google Scholar 

  31. Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson MP (2009) Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromol Med 11(1):28–42

    Article  CAS  Google Scholar 

  32. Wang J, Fivecoat H, Ho L, Pan Y, Ling E, Pasinetti GM (2010) The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochim Biophys Acta 8(4):26

    Google Scholar 

  33. Jesus S, Gomez-Garre P, Carrillo F, Caceres-Redondo MT, Huertas-Fernandez I, Bernal-Bernal I, Bonilla-Toribio M, Vargas-Gonzalez L et al (2013) Genetic association of sirtuin genes and Parkinson’s disease. J Neurol 260(9):2237–2241

    Article  CAS  PubMed  Google Scholar 

  34. Lalla R, Donmez G (2013) The role of sirtuins in Alzheimer’s disease. Front Aging Neurosci 5 (16)

  35. Li Y, Xu W, McBurney MW, Longo VD (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8(1):38–48

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sansone L, Reali V, Pellegrini L, Villanova L, Aventaggiato M, Marfe G, Rosa R, Nebbioso M et al (2013) SIRT1 silencing confers neuroprotection through IGF-1 pathway activation. J Cell Physiol 228(8):1754–1761

    Article  CAS  PubMed  Google Scholar 

  37. Slomka M, Zieminska E, Salinska E, Lazarewicz JW (2008) Neuroprotective effects of nicotinamide and 1-methylnicotinamide in acute excitotoxicity in vitro. Folia Neuropathol 46(1):69–80

    CAS  PubMed  Google Scholar 

  38. Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang W, Liu X, Cao J, Meng F, Li M, Chen B, Zhang J (2015) miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. J Mol Neurosci 55(4):821–829

    Article  CAS  PubMed  Google Scholar 

  40. Guan L, Jia N, Zhao X, Zhang X, Tang G, Yang L, Sun H, Wang D et al (2013) The involvement of ERK/CREB/Bcl-2 in depression-like behavior in prenatally stressed offspring rats. Brain Res Bull 99:1–8

    Article  CAS  PubMed  Google Scholar 

  41. Ahn YM, Seo MS, Kim SH, Kim Y, Yoon SC, Juhnn YS, Kim YS (2005) Increased phosphorylation of Ser473-Akt, Ser9-GSK-3beta and Ser133-CREB in the rat frontal cortex after MK-801 intraperitoneal injection. Int J Neuropsychopharmacol 8(4):607–613

    Article  CAS  PubMed  Google Scholar 

  42. Castren E, da Penha BM, Lindholm D, Thoenen H (1993) Differential effects of MK-801 on brain-derived neurotrophic factor mRNA levels in different regions of the rat brain. Exp Neurol 122(2):244–252

    Article  CAS  PubMed  Google Scholar 

  43. Hanson ND, Nemeroff CB, Owens MJ (2011) Lithium, but not fluoxetine or the corticotropin-releasing factor receptor 1 receptor antagonist R121919, increases cell proliferation in the adult dentate gyrus. J Pharmacol Exp Ther 337(1):180–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wozniak DF, Dikranian K, Ishimaru MJ, Nardi A, Corso TD, Tenkova T, Olney JW, Fix AS (1998) Disseminated corticolimbic neuronal degeneration induced in rat brain by MK-801: potential relevance to Alzheimer’s disease. Neurobiol Dis 5(5):305–322

    Article  CAS  PubMed  Google Scholar 

  45. Hwang JY, Kim YH, Ahn YH, Wie MB, Koh JY (1999) N-Methyl-D-aspartate receptor blockade induces neuronal apoptosis in cortical culture. Exp Neurol 159(1):124–130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Guibao Li for applying technical supports in the work. This experiment was supported by the following grants, a grant from the National Natural Science Foundation of China with no.81371471, grants from Natural Science Foundation of Shandong Province with no. ZR2010HM051 and no. ZR2012HM026, and a grant from Shandong Provincial Science and Technology Development Plan with no. 2011GSF11810.

Conflict of Interest

We, all authors, declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Zhang, J., Wu, J. et al. Paliperidone Protects SH-SY5Y Cells Against MK-801-Induced Neuronal Damage Through Inhibition of Ca2+ Influx and Regulation of SIRT1/miR-134 Signal Pathway. Mol Neurobiol 53, 2498–2509 (2016). https://doi.org/10.1007/s12035-015-9217-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9217-z

Keywords

Navigation