Skip to main content
Log in

Genetic association of sirtuin genes and Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease caused by both genetic and environmental factors. Sirtuins are highly-conserved, NAD-dependent class III deacetylases that regulate a variety of cellular functions. Most of the known sirtuins have been involved in animal models of neurodegenerative disorders, such as PD. Although seven sirtuin family members have been identified (SIRT1–SIRT7) the relationship between sirtuins and PD in humans has not been established. Our aim was to investigate the association between sirtuin genes and risk of PD. We included 326 PD patients and 371 controls from southern Spain. Forty-one single nucleotide polymorphisms (SNPs) in sirtuin genes were genotyped in order to determine whether they were related to the risk of PD. These SNPs included Tag-SNPs, coding non-synonymous SNPs and SNPs affecting activity of microRNA binding sites. No relationship was found between these SNPs in sirtuin genes and PD. Our data indicate that variations in sirtuin genes do not affect the risk for PD, at least in our population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Puschman A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 19:407–415

    Article  Google Scholar 

  2. Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89:398–406

    Article  PubMed  CAS  Google Scholar 

  3. Deng H, Gao K, Jankovic J (2013) The VPS35 gene and Parkinson’s disease. Mov Disord 28(5):569–575

    Article  PubMed  CAS  Google Scholar 

  4. Dali-Youcet N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J (2007) Sirtuins: the “magnificent seven”, function, metabolism and longevity. Ann Med 39:335–345

    Article  Google Scholar 

  5. Mine JC, Denu JM (2008) The Sirtuin family: therapeutic targets to treat disease of aging. Curr Opin Chem Biol 12:11–17

    Article  Google Scholar 

  6. Kim D, Nguyen MD, Dobbin MM et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179

    Article  PubMed  CAS  Google Scholar 

  7. Jiang M, Wang J, Fu J et al (2011) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18:153–158

    Article  PubMed  Google Scholar 

  8. Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against a-synuclein aggregation by activating molecular chaperones. J Neurosci 32:124–132

    Article  PubMed  CAS  Google Scholar 

  9. Wareski P, Vaarmann A, Choubey V et al (2009) PGC-1a and PGC-1b regulate mitochondrial density in neurons. J Biol Chem 284:21379–21385

    Article  PubMed  CAS  Google Scholar 

  10. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against cocconi2908 by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  PubMed  CAS  Google Scholar 

  11. Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002

    Article  PubMed  CAS  Google Scholar 

  12. Outeiro TF, Kontopoulos E, Altmann SM et al (2007) Sirtuin 2 inhibitors rescue a-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317:516–519

    Article  PubMed  CAS  Google Scholar 

  13. Liu L, Arun A, Peritore C, Donmez G (2012) Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahidropyridine (MPTP)-induced nigroestriatal damage via deacetylating forehead box O3a (Foxo3a) and activating Bim protein. J Biol Chem 287:32307–32311

    Article  PubMed  CAS  Google Scholar 

  14. Hirschey MD, Shimazu T, Goetzman E et al (2010) SIRT3 regulates fatty acid oxidation via reversible enzyme deacetylation. Nature 582:543–548

    Google Scholar 

  15. Kanfi Y, Shalman R, Peshtia V, Pilosofa SN, Gozlana YM, Pearsonb KJ, Lerrera B, Moazedc D, Marined J-C, Cabob R, Cohena H (2008) Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett 582:543–548

    Article  PubMed  CAS  Google Scholar 

  16. Raghavan A, Shah ZA (2011) Sirtuins in neurodegenerative diseases: a biological–chemical perspective. Neurodegener Dis 9:1–10

    Article  PubMed  Google Scholar 

  17. Brown K, Xie S, Qiu X et al (2013) SIRT3 reverses aging-associated degeneration. Cell Rep 3:319–327

    Article  PubMed  CAS  Google Scholar 

  18. Kanfi Y, Naiman S, Amir G et al (2012) Sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221

    Article  PubMed  CAS  Google Scholar 

  19. Glorioso C, Sunghee O, Douillard GG, Sibille E (2011) Brain molecular aging, promotion of neurological disease and modulation by Sirtuin5 longevity gene polymorphism. Neurobiol Dis 41:279–290

    Article  PubMed  CAS  Google Scholar 

  20. Barber M, Michishita-Kioi E, Xi Y et al (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118

    PubMed  CAS  Google Scholar 

  21. Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752

    Article  PubMed  CAS  Google Scholar 

  22. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  23. Zhang A, Wang H, Qin X, Pang S, Yan B (2012) Genetic analysis of SIRT1 gene promoter in sporadic Parkinson’s disease. Biochem Biophys Res Commun 422:693–696

    Article  PubMed  CAS  Google Scholar 

  24. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100:10794–10799

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the patients and healthy individuals who participated in this study. We would also like to thank Raquel Gómez, from the Genomic Service of the Instituto de Biomedicina de Sevilla (IBiS), for her technical support. This work was supported by grants from the Ministerio de Economía y Competitividad de España [SAF2007-60700]; the Instituto de Salud Carlos III [PI10/01674, CP08/00174], the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía [CVI-02526, CTS-7685], the Consejería de Salud y Bienestar Social de la Junta de Andalucía [PI-0377/2007, PI-0741/2010, PI-0437-2012], the Sociedad Andaluza de Neurología, the Jacques and Gloria Gossweiler Foundation and the Fundación Alicia Koplowitz. Pilar Gómez-Garre was supported by the “Miguel Servet” program from the Instituto de Salud Carlos III.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Mir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jesús, S., Gómez-Garre, P., Carrillo, F. et al. Genetic association of sirtuin genes and Parkinson’s disease. J Neurol 260, 2237–2241 (2013). https://doi.org/10.1007/s00415-013-6970-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-013-6970-7

Keywords

Navigation