Skip to main content
Log in

Downregulation of Serotonergic Gene Expression in the Raphe Nuclei of the Midbrain Under Chronic Social Defeat Stress in Male Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is ample experimental evidence supporting the hypothesis that the brain serotonergic system is involved in the control of chronic social defeat stress (CSDS), depression, and anxiety. The study aimed to analyze mRNA levels of the serotonergic genes in the raphe nuclei of midbrain that may be associated with chronic social defeats consistently shown by male mice in special experimental settings. The serotonergic genes were the Tph2, Sert, Maoa, and Htr1a. The Bdnf and Creb genes were also studied. The experimental groups were composed of male mice with experience of defeats in 21 daily encounters and male mice with the same track record of defeats followed by a no-defeat period without agonistic interactions (relative rest for 14 days). It has been shown that mRNA levels of the Tph2, Maoa, Sert, Htr1a, Bdnf, and Creb genes in the raphe nuclei of defeated mice are decreased as compared with the controls. The expression of the serotonergic genes as well as the Creb gene is not restored to the control level after the 2 weeks of relative rest. mRNA levels of Bdnf gene are not recovered to the control levels, although some upregulation was observed in rested losers. CSDS experience inducing the development of mixed anxiety/depression-like state in male mice downregulates the expression of serotonergic genes associated with the synthesis, inactivation, and reception of serotonin. The Bdnf and Creb genes in the midbrain raphe nuclei are also downregulated under CSDS. Period of relative rest is not enough for most serotonergic genes to recover expression to the control levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kudryavtseva NN, Avgustinovich DF (1998) Behavioral and physiological markers of experimental depression induced by social conflicts (DISC). Aggress Behav 24:271–286

    Article  Google Scholar 

  2. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(Suppl 1):2–19

    Article  PubMed  Google Scholar 

  3. Avgustinovich DF, Alekseyenko OV, Bakshtanovskaya IV, Koryakina LA, Lipina TV et al (2004) Dynamic changes of brain serotonergic and dopaminergic activities during development of anxious depression: experimental study. Usp Fiziol Nauk 35:19–40

    PubMed  CAS  Google Scholar 

  4. Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR et al (2008) Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94

    Article  PubMed  Google Scholar 

  5. Carr GV, Lucki I (2011) The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology (Berl) 213:265–287

    Article  CAS  Google Scholar 

  6. Kudryavtseva NN, Bakshtanovskaya IV, Koryakina LA (1991) Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav 38:315–320

    Article  PubMed  CAS  Google Scholar 

  7. Filipenko ML, Alekseyenko OV, Beilina AG, Kamynina TP, Kudryavtseva NN (2001) Increase of tyrosine hydroxylase and dopamine transporter mRNA levels in ventral tegmental area of male mice under influence of repeated aggression experience. Brain Res Mol Brain Res 96:77–81

    Article  PubMed  CAS  Google Scholar 

  8. Filipenko ML, Beilina AG, Alekseyenko OV, Dolgov VV, Kudryavtseva NN (2002) Increase in expression of brain serotonin transporter and monoamine oxidase a genes induced by repeated experience of social defeats in male mice. Biochemistry (Mosc) 67:451–455

    Article  CAS  Google Scholar 

  9. Goloshchapov AV, Filipenko ML, Bondar NP, Kudryavtseva NN, Van Ree JM (2005) Decrease of kappa-opioid receptor mRNA level in ventral tegmental area of male mice after repeated experience of aggression. Brain Res Mol Brain Res 135:290–292

    Article  PubMed  CAS  Google Scholar 

  10. Kudryavtseva NN, Filipenko ML, Bakshtanovskaya IV, Avgustinovich DF, Alekseenko OV et al (2004) Changes in the expression of monoaminergic genes under the influence of repeated experience of agonistic interactions: from behavior to gene. Russ J Genet 40:590–604

    Article  CAS  Google Scholar 

  11. Abumaria N, Rygula R, Hiemke C, Fuchs E, Havemann-Reinecke U et al (2007) Effect of chronic citalopram on serotonin-related and stress-regulated genes in the dorsal raphe nucleus of the rat. Eur Neuropsychopharmacol 17:417–429

    Article  PubMed  CAS  Google Scholar 

  12. Sulser F (2002) The role of CREB and other transcription factors in the pharmacotherapy and etiology of depression. Ann Med 34:348–356

    Article  PubMed  CAS  Google Scholar 

  13. Blendy JA (2006) The role of CREB in depression and antidepressant treatment. Biol Psychiatry 59:1144–1150

    Article  PubMed  CAS  Google Scholar 

  14. Greenberg ME, Xu B, Lu B, Hempstead BL (2009) New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci 29:12764–12767

    Article  PubMed  CAS  Google Scholar 

  15. D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4:183–194

    Article  PubMed  Google Scholar 

  16. Gass P, Riva MA (2007) CREB, neurogenesis and depression. Bioessays 29:957–961

    Article  PubMed  CAS  Google Scholar 

  17. Avgustinovich DF, Kovalenko IL, Kudryavtseva NN (2005) A model of anxious depression: persistence of behavioral pathology. Neurosci Behav Physiol 35:917–924

    Article  PubMed  CAS  Google Scholar 

  18. Kudryavtseva NN (2010) Sensory contact model: protocol, control, applications. Nova Science Publishers, Inc, New York, p 38

    Google Scholar 

  19. Rosen GD, Williams AG, Capra JA, Connolly MT, Cruz B, et al. (2000) The Mouse Brain Library @ www.mbl.org. Int Mouse Genome Conference 14: 166. www.mbl.org

  20. Cook NL, Vink R, Donkin JJ, van den Heuvel C (2009) Validation of reference genes for normalization of real-time quantitative RT-PCR data in traumatic brain injury. J Neurosci Res 87:34–41

    Article  PubMed  CAS  Google Scholar 

  21. Chari R, Lonergan KM, Pikor LA, Coe BP, Zhu CQ et al (2010) A sequence-based approach to identify reference genes for gene expression analysis. BMC Med Genomics 3:32

    Article  PubMed  Google Scholar 

  22. Valente V, Teixeira SA, Neder L, Okamoto OK, Oba-Shinjo SM et al (2009) Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR. BMC Mol Biol 10:17

    Article  PubMed  Google Scholar 

  23. Wierschke S, Gigout S, Horn P, Lehmann TN, Dehnicke C et al (2010) Evaluating reference genes to normalize gene expression in human epileptogenic brain tissues. Biochem Biophys Res Commun 403:385–390

    Article  PubMed  CAS  Google Scholar 

  24. Otis JP, Ackermann LW, Denning GM, Carey HV (2010) Identification of qRT-PCR reference genes for analysis of opioid gene expression in a hibernator. J Comp Physiol B 180:619–629

    Article  PubMed  CAS  Google Scholar 

  25. Passmore M, Nataatmadja M, Fraser JF (2009) Selection of reference genes for normalisation of real-time RT-PCR in brain-stem death injury in Ovis aries. BMC Mol Biol 10:72

    Article  PubMed  Google Scholar 

  26. Castren E, Rantamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70:289–297

    Article  PubMed  CAS  Google Scholar 

  27. Duman RS (2009) Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. Dialogues Clin Neurosci 11:239–255

    PubMed  Google Scholar 

  28. Hashimoto K (2010) Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci 64:341–357

    Article  PubMed  CAS  Google Scholar 

  29. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ et al (2002) Neurobiology of depression. Neuron 34:13–25

    Article  PubMed  CAS  Google Scholar 

  30. Thakker-Varia S, Alder J (2009) Neuropeptides in depression: role of VGF. Behav Brain Res 197:262–278

    Article  PubMed  CAS  Google Scholar 

  31. Pizarro JM, Lumley LA, Medina W, Robison CL, Chang WE et al (2004) Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice. Brain Res 1025:10–20

    Article  PubMed  CAS  Google Scholar 

  32. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525

    Article  PubMed  CAS  Google Scholar 

  33. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    Article  PubMed  CAS  Google Scholar 

  34. Krishnan V, Han MH, Graham DL, Berton O, Renthal W et al (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404

    Article  PubMed  CAS  Google Scholar 

  35. Gomez-Lazaro E, Arregi A, Beitia G, Vegas O, Azpiroz A et al (2011) Individual differences in chronically defeated male mice: behavioral, endocrine, immune, and neurotrophic changes as markers of vulnerability to the effects of stress. Stress 14:537–548

    Article  PubMed  CAS  Google Scholar 

  36. Kudryavtseva NN, Bondar NP, Boyarskikh UA, Filipenko ML (2010) Snca and Bdnf gene expression in the VTA and raphe nuclei of midbrain in chronically victorious and defeated male mice. PLoS One 5:e14089

    Article  PubMed  Google Scholar 

  37. Kudryavtseva NN, Bakshtanovskaya IV (1988) The development of a depression-like state in submissive male mice of C57BL/6J strain. Institute of Cytology and Genetics SD RAS, Novosibirsk, p 39

    Google Scholar 

  38. Miczek KA, Yap JJ, Covington HE 3rd (2008) Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol Ther 120:102–128

    Article  PubMed  CAS  Google Scholar 

  39. Kalueff AV, Avgustinovich DF, Kudryavtseva NN, Murphy DL (2006) BDNF in anxiety and depression. Science 312:1598–1599, author reply 1598–1599

    Article  PubMed  CAS  Google Scholar 

  40. Rios M, Fan G, Fekete C, Kelly J, Bates B et al (2001) Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 15:1748–1757

    Article  PubMed  CAS  Google Scholar 

  41. Lang UE, Hellweg R, Kalus P, Bajbouj M, Lenzen KP et al (2005) Association of a functional BDNF polymorphism and anxiety-related personality traits. Psychopharmacology (Berl) 180:95–99

    Article  CAS  Google Scholar 

  42. Dwivedi Y, Rizavi HS, Pandey GN (2006) Antidepressants reverse corticosterone-mediated decrease in brain-derived neurotrophic factor expression: differential regulation of specific exons by antidepressants and corticosterone. Neuroscience 139:1017–1029

    Article  PubMed  CAS  Google Scholar 

  43. Yu H, Chen ZY (2011) The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 32:3–11

    Article  PubMed  CAS  Google Scholar 

  44. Groves JO (2007) Is it time to reassess the BDNF hypothesis of depression? Mol Psychiatry 12:1079–1088

    Article  PubMed  CAS  Google Scholar 

  45. Gray JD, Milner TA, McEwen BS (2012) Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience. doi:10.1016/j.neuroscience.2012.08.034 Aug 23. (Review)

  46. Kimpton J (2012) The brain derived neurotrophic factor and influences of stress in depression. Psychiatr Danub 24(Suppl 1):S169–S171, Review

    PubMed  Google Scholar 

  47. Tapia-Arancibia L, Rage F, Givalois L, Arancibia S (2004) Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol 25(2):77–107, Review

    Article  PubMed  CAS  Google Scholar 

  48. Schaaf MJ, De Kloet ER, Vreugdenhil E (2000) Corticosterone effects on BDNF expression in the hippocampus. Implications for memory formation. Stress 3(3):201–208, Review

    Article  PubMed  CAS  Google Scholar 

  49. Boer U, Alejel T, Beimesche S, Cierny I, Krause D et al (2007) CRE/CREB-driven up-regulation of gene expression by chronic social stress in CRE-luciferase transgenic mice: reversal by antidepressant treatment. PLoS One 2:e431

    Article  PubMed  Google Scholar 

  50. Abumaria N, Rygula R, Havemann-Reinecke U, Ruther E, Bodemer W et al (2006) Identification of genes regulated by chronic social stress in the rat dorsal raphe nucleus. Cell Mol Neurobiol 26:145–162

    Article  PubMed  CAS  Google Scholar 

  51. Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  PubMed  CAS  Google Scholar 

  52. Spangler R, Ho A, Zhou Y, Maggos CE, Yuferov V et al (1996) Regulation of kappa opioid receptor mRNA in the rat brain by “binge” pattern cocaine administration and correlation with preprodynorphin mRNA. Brain Res Mol Brain Res 38:71–76

    Article  PubMed  CAS  Google Scholar 

  53. Azaryan AV, Clock BJ, Rosenberger JG, Cox BM (1998) Transient upregulation of mu opioid receptor mRNA levels in nucleus accumbens during chronic cocaine administration. Can J Physiol Pharmacol 76:278–283

    Article  PubMed  CAS  Google Scholar 

  54. Nikulina EM, Hammer RP Jr, Miczek KA, Kream RM (1999) Social defeat stress increases expression of mu-opioid receptor mRNA in rat ventral tegmental area. Neuroreport 10:3015–3019

    Article  PubMed  CAS  Google Scholar 

  55. Crespo JA, Manzanares J, Oliva JM, Corchero J, Palomo T et al (2001) Extinction of cocaine self-administration produces a differential time-related regulation of proenkephalin gene expression in rat brain. Neuropsychopharmacology 25:185–194

    Article  PubMed  CAS  Google Scholar 

  56. Nichols CD, Garcia EE, Sanders-Bush E (2003) Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration. Brain Res Mol Brain Res 111:182–188

    Article  PubMed  CAS  Google Scholar 

  57. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M et al (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25:237–258

    PubMed  CAS  Google Scholar 

  58. Martinowich K, Lu B (2008) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33:73–83

    Article  PubMed  CAS  Google Scholar 

  59. Avgustinovich DF, Alekseyenko OV, Tenditnik MV (2001) Fighting among C57BL/6J mice and its implications for [3H]8-hydroxy-N, N-dipropyl-2-aminotetralin binding in various brain regions. Neurosci Lett 305:189–192

    Article  PubMed  CAS  Google Scholar 

  60. Avgustinovich DF, Lipina TV, Molodtsova GF, Alekseenko OV, Koriakina LA et al (1998) Change of tryptophan hydroxylase and monoamine oxidase A activities in experimental depression induced by social confrontation. Dokl Akad Nauk 363:405–408

    PubMed  CAS  Google Scholar 

  61. Kudryavtseva NN, Avgustinovich DF (2006) Molecular mechanisms of social behavior: comments to the paper of Berton et al. 2006. Russ J Neurosci 4:33–35

    Google Scholar 

  62. 22222Geddes JR, Carney SM, Davies C, Furukawa TA, Kupfer DJ et al (2003) Relapse prevention with antidepressant drug treatment in depressive disorders: a systematic review. Lancet 361:653–661

    Article  PubMed  CAS  Google Scholar 

  63. Thase ME (2006) Preventing relapse and recurrence of depression: a brief review of therapeutic options. CNS Spectr 11:12–21

    PubMed  Google Scholar 

  64. Soares-Weiser K, Bravo Vergel Y, Beynon S, Dunn G, Barbieri M et al (2007) A systematic review and economic model of the clinical effectiveness and cost-effectiveness of interventions for preventing relapse in people with bipolar disorder. Health Technol Assess 11:iii–iv, ix-206

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported partly by Research Program from the Russian Academy of Sciences “Molecular and Cellular Biology” grant А.II.6.16 and “Russian Foundation for Basic Research” grant 10-04-00083-а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia N. Kudryavtseva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyarskikh, U.A., Bondar, N.P., Filipenko, M.L. et al. Downregulation of Serotonergic Gene Expression in the Raphe Nuclei of the Midbrain Under Chronic Social Defeat Stress in Male Mice. Mol Neurobiol 48, 13–21 (2013). https://doi.org/10.1007/s12035-013-8413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8413-y

Keywords

Navigation