Skip to main content
Log in

Exfoliated graphite/acrylic composite film as hydrophobic coating of 3D-printed polylactic acid surfaces

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printers utilize polylactic acid (PLA) as feedstock filament due to its renewability, low extrusion temperature, and good mechanical properties. One major drawback of 3D-printed PLA products is their limited application in harsh environments due to their low hydrolytic resistance. We developed exfoliated graphite (EG)/acrylic composite films as protective coatings of 3D-printed PLA surfaces. This paper reports on the water contact angles (WCAs) and weight change behavior of 3D-printed PLA surfaces coated with EG/acrylic composite films under humid exposure. We obtained hydrophobic films (WCA > 90°) after adding EG platelets to the acrylic resin. Moreover, the films retain their hydrophobicity after a long humid exposure. The films also reduce the water absorption of 3D-printed PLA surfaces. The addition of stearic acid in the coating formulation further enhances the water resistance of the films. In conclusion, the hydrophobic EG/acrylic composite films improve the hydrolytic resistance of 3D-printed PLA surfaces. The use of EG over defect-free graphene to create hydrophobic polymeric films will need to be considered in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Berman, B, “3-D Printing: The New Industrial Revolution.” Bus. Horizons, 55 155–162 (2012)

    Article  Google Scholar 

  2. Guo, N, Leu, MC, “Additive Manufacturing: Technology, Applications and Research Needs.” Front. Mech. Eng., 8 215–243 (2013)

    Article  Google Scholar 

  3. Stansbury, JW, Idacavage, MJ, “3D Printing with Polymers: Challenges Among Expanding Options and Opportunities.” Dent. Mater., 32 54–64 (2016)

    Article  Google Scholar 

  4. Lehermeier, HJ, Dorgan, JR, Way, JD, “Gas Permeation Properties of Poly (Lactic Acid).” J. Membr. Sci., 190 243–251 (2001)

    Article  Google Scholar 

  5. Lim, LT, Auras, R, Rubino, M, “Processing Technologies for Poly (Lactic Acid).” Prog. Polym. Sci., 33 820–852 (2008)

    Article  Google Scholar 

  6. Hassan, E, Wei, Y, Jiao, H, Muhuo, Y, “Dynamic Mechanical Properties and Thermal Stability of Poly(Lactic Acid) and Poly(Butylene Succinate) Blends Composites.” J. Fiber Bioeng. Inf., 6 85–94 (2013)

    Article  Google Scholar 

  7. Huang, HD, Ren, PG, Xu, JZ, Xu, L, Zhong, GJ, Hsiao, BS, Li, ZM, “Improved Barrier Properties of Poly(Lactic Acid) with Randomly Dispersed Graphene Oxide Nanosheets.” J. Membr. Sci., 464 110–118 (2014)

    Article  Google Scholar 

  8. Jin, Y, Wan, Y, Zhang, B, Liu, Z, “Modeling of the Chemical Finishing Process for Polylactic Acid Parts in Fused Deposition Modeling and Investigation of its Tensile Properties.” J. Mater. Process. Technol., 240 233–239 (2017)

    Article  Google Scholar 

  9. Siparsky, GL, Voorhees, KJ, Miao, F, “Hydrolysis of Polylactic Acid (PLA) and Polycaprolactone (PCL) in Aqueous Acetonitrile Solutions: Autocatalysis.” J. Polym. Environ., 6 31–41 (1998)

    Article  Google Scholar 

  10. Rhim, JW, Hong, SI, Ha, CS, “Tensile, Water Vapor Barrier and Antimicrobial Properties of PLA/Nanoclay Composite Films.” LWT Food Sci. Technol., 42 612–617 (2009)

    Article  Google Scholar 

  11. Pantani, R, Gorrasi, G, Vigliotta, G, Murariu, M, Dubois, P, “PLA-ZnO Nanocomposite Films: Water Vapor Barrier Properties and Specific End-Use Characteristics.” Eur. Polym. J., 49 3471–3482 (2013)

    Article  Google Scholar 

  12. Gorrasi, G, Pantani, R, Murariu, M, Dubois, P, “PLA/Halloysite Nanocomposite Films: Water Vapor Barrier Properties and Specific Key Characteristics.” Macromol. Mater. Eng., 299 104–115 (2014)

    Article  Google Scholar 

  13. Sanchez-Garcia, MD, Lagaron, JM, “On the Use of Plant Cellulose Nanowhiskers to Enhance the Barrier Properties of Polylactic Acid.” Cellulose, 17 987–1004 (2010)

    Article  Google Scholar 

  14. De Paula, EL, Mano, V, Pereira, FV, “Influence of Cellulose Nanowhiskers on the Hydrolytic Degradation Behavior of Poly(d,l-lactide).” Polym. Degrad. Stab., 96 1631–1638 (2011)

    Article  Google Scholar 

  15. Pajarito, B, Kubouchi, M, “Flake-Filled Polymers for Corrosion Protection.” J. Chem. Eng. Jpn., 46 18–26 (2013)

    Article  Google Scholar 

  16. Pajarito, B, Kubouchi, M, Sakai, T, Aoki, S, “Effective Diffusion in Flake-Polymer Composites with Accelerated Interphase Transport.” J. Soc. Mater. Sci. Jpn., 61 860–866 (2012)

    Article  Google Scholar 

  17. Shumigin, D, Tarasova, E, Krumme, A, Meier, P, “Rheological and Mechanical Properties of Poly(Lactic) Acid/Cellulose and LDPE/Cellulose Composites.” Mater. Sci., 17 32–37 (2011)

    Google Scholar 

  18. Ray, SS, Okamoto, M, “Biodegradable Polylactide and its Nanocomposites: Opening a New Dimension for Plastics and Composites.” Macromol. Rapid Commun., 24 815–840 (2003)

    Article  Google Scholar 

  19. Leigh, SJ, Bradley, RJ, Purssell, CP, Billson, DR, Hutchins, DA, “A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors.” PLoS One, 7 e49365 (2012)

    Article  Google Scholar 

  20. Brendley, WH, Bakule, RD, “Chemistry and Technology of Acrylic Resins for Coatings.” In: Tess, RW, Poehlein, GW (eds.) Applied Polymer Science, pp. 1031–1052. American Chemical Society, Washington, DC (1985)

    Chapter  Google Scholar 

  21. Chung, DDL, “A Review of Exfoliated Graphite.” J. Mater. Sci., 51 554–568 (2016)

    Article  Google Scholar 

  22. Debelak, B, Lafdi, K, “Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties.” Carbon, 45 1727–1734 (2007)

    Article  Google Scholar 

  23. Kwon, H, Kim, D, Seo, J, Han, H, “Enhanced Moisture Barrier Films Based on EVOH/Exfoliated Graphite (EGn) Nanocomposite Films by Solution Blending.” Macromol. Res., 21 987–994 (2013)

    Article  Google Scholar 

  24. Borriello, C, De Maria, A, Jovic, N, Montone, A, Schwarz, M, Vittori Antisari, M, “Mechanochemical Exfoliation of Graphite and its Polyvinyl Alcohol Nanocomposites with Enhanced Barrier Properties.” Mater. Manuf. Processes, 24 1053–1057 (2009)

    Article  Google Scholar 

  25. Tsai, MH, Tseng, IH, Huang, YC, Yu, HP, Chang, PY, “Transparent Polyimide Film with Improved Water and Oxygen Barrier Property by In-Situ Exfoliating Graphite.” Adv. Eng. Mater., 18 582–590 (2016)

    Article  Google Scholar 

  26. Hernandez, Y, Nicolosi, V, Lotya, M, Blighe, FM, Sun, Z, De, S, McGovern, IT, Holland, B, Byrne, M, Gun’Ko, YK, Boland, JJ, Niraj, P, Duesberg, G, Krishnamurthy, S, Goodhue, R, Hutchison, J, Scardaci, V, Ferrari, AC, Coleman, JN, “High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite.” Nat. Nanotechnol., 3 563–568 (2008)

    Article  Google Scholar 

  27. Chartarrayawadee, W, Molloy, R, Ratchawet, A, Janmee, N, Butsamran, M, Panpai, K, “Fabrication of Poly(Lactic Acid)/Graphene Oxide/Stearic Acid Composites with Improved Tensile Strength.” Polym. Composite, 38 2272–2282 (2015)

    Article  Google Scholar 

  28. Planes, E, Duchet, J, Maazouz, A, Gerard, J, “Characterization of New Formulations for the Rotational Molding Based on Ethylene-Propylene Copolymer/Graphite Nanocomposites.” Polym. Eng. Sci., 48 723–731 (2008)

    Article  Google Scholar 

  29. Williams, DL, Kuhn, AT, Amann, MA, Hausinger, MB, Konarik, MM, Nesselrode, EI, “Computerised Measurement of Contact Angles.” Galvanotechnik, 101 2502–2512 (2010)

    Google Scholar 

  30. Narayan, R, Kim, SO, “Surfactant Mediated Liquid Phase Exfoliation of Graphene.” Nano Convergence, 2 20 (2015)

    Article  Google Scholar 

  31. Hamilton, CE, Lomeda, JR, Sun, Z, Tour, JM, Barron, AR, “High-Yield Organic Dispersions of Unfunctionalized Graphene.” Nano Lett., 9 3460–3462 (2009)

    Article  Google Scholar 

  32. Yi, M, Shen, Z, “Kitchen Blender for Producing High-Quality Few-Layer Graphene.” Carbon, 78 622–626 (2014)

    Article  Google Scholar 

  33. Qian, Y, Vu, A, Smyrl, W, Stein, A, “Facile Preparation and Electrochemical Properties of V2O5–Graphene Composite Films as Free-Standing Cathodes for Rechargeable Lithium Batteries.” J. Electrochem. Soc., 159 A1135–A1140 (2012)

    Article  Google Scholar 

  34. Valapa, RV, Pugazhenthi, G, Katiyar, V, “Effect of Graphene Content on the Properties of Poly (Lactic Acid) Nanocomposites.” RSC Adv., 5 28410–28423 (2015)

    Article  Google Scholar 

  35. Wu, Y, Wang, B, Ma, Y, Huang, Y, Li, N, Zhang, F, Chen, Y, “Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films.” Nano Res., 3 661–669 (2010)

    Article  Google Scholar 

  36. Li, ZQ, Lu, CJ, Xia, ZP, Zhou, Y, Luo, Z, “X-Ray Diffraction Patterns of Graphite and Turbostratic Carbon.” Carbon, 45 1686–1695 (2007)

    Article  Google Scholar 

  37. Sato, S, Gondo, D, Wada, T, Kanehashi, S, Nagai, K, “Effects of Various Liquid Organic Solvents on Solvent-Induced Crystallization of Amorphous Poly (Lactic Acid) Film.” J. Appl. Polym. Sci., 129 1607–1617 (2013)

    Article  Google Scholar 

  38. Awaja, F, Gilbert, M, Kelly, G, Fox, B, Pigram, PJ, “Adhesion of Polymers.” Prog. Polym. Sci., 34 948–968 (2009)

    Article  Google Scholar 

  39. Zhao, Y, Qiu, J, Feng, H, Zhang, M, Lei, L, Wu, X, “Improvement of Tensile and Thermal Properties of Poly (Lactic Acid) Composites with Admicellar-Treated Rice Straw Fiber.” Chem. Eng. J., 173 659–666 (2011)

    Article  Google Scholar 

  40. Yang, C, Smyrl, WH, Cussler, EL, “Flake Alignment in Composite Coatings.” J. Membr. Sci., 231 1–12 (2004)

    Article  Google Scholar 

  41. Aramendia, E, Mallégol, J, Jeynes, C, Barandiaran, M, Keddie, J, Asua, J, “Distribution of Surfactants Near Acrylic Latex Film Surfaces: A Comparison of Conventional and Reactive Surfactants (Surfmers).” Langmuir., 19 3212–3221 (2003)

    Article  Google Scholar 

  42. Liu, P, Sun, S, Hou, H, Dong, H, “Effects of Fatty Acids with Different Degree of Unsaturation on Properties of Sweet Potato Starch-Based Films.” Food Hydrocolloids, 61 351–357 (2016)

    Article  Google Scholar 

  43. Wu, X, Chen, Y, Lv, XC, Du, ZL, Zhu, PX, “Effect of Stearic Acid and Sodium Stearate on Cast Cornstarch Films.” J. Appl. Polym. Sci., 124 3782–3791 (2012)

    Article  Google Scholar 

  44. Schmidt, VCR, Porto, LM, Laurindo, JB, Menegalli, FC, “Water Vapor Barrier and Mechanical Properties of Starch Films Containing Stearic Acid.” Ind. Crops Prod., 41 227–234 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from Pacific Resins Inc. (Pasig City, Philippines) in supplying the acrylic resin. We also thank Engr. Jopeth Ramis in providing natural graphite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan B. Pajarito.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajarito, B.B., Cayabyab, C.A.L., Costales, P.A.C. et al. Exfoliated graphite/acrylic composite film as hydrophobic coating of 3D-printed polylactic acid surfaces. J Coat Technol Res 16, 1133–1140 (2019). https://doi.org/10.1007/s11998-019-00188-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00188-4

Keywords

Navigation