Skip to main content
Log in

Synthesis and characterization of castor oil-based branched polyols from renewable resources and their polyurethane-urea coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The chemical modifications of castor oil (CO) to develop branched polyols and their polyurethane-urea coatings have been investigated. For this purpose, castor oil-based branched polyols (COBPs) were synthesized from CO by modifying with succinic anhydride followed by reaction with hydroxyl group moieties like petrochemical-based pentaerythritol, trimethylolpropane and bio-based glycerol. The COBPs were characterized by using Fourier transform infrared, 1H and 13C nuclear magnetic resonance spectroscopies, gel permeation chromatography and differential scanning calorimetry. These COBPs were further urethanized with isophorone diisocyanate at OH/NCO ratio of 1:1.6 to get the isocyanate-terminated polyurethane prepolymers. The surplus isocyanate groups of the prepolymer were cured with atmospheric moisture at ambient temperature condition to form uniform film with fast surface drying. The thermo-mechanical, viscoelastic and swelling properties were evaluated for the cured coating films. Properties have been discussed from the viewpoint of branched network and also the urethane segment present in the structure. The glass transition temperatures of the coating films were found to be in the range of 32–64°C. The modified castor oil coating films show better thermo-mechanical and viscoelastic properties in comparison with control (unmodified castor oil) coating films. This work delivers an effective and promising way to synthesize branched moieties in plant oil-based high performance coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allauddin, S, Narayan, R, Raju, KVSN, “Synthesis and Properties of Alkoxysilane Castor Oil and Their Polyurethane/Urea–Silica Hybrid Coating Films.” ACS. Sustain. Chem. Eng., 1 910–918 (2013)

    Article  CAS  Google Scholar 

  2. Shirkel, A, Bharatkumar, D, Ketan, K, “Novel Applications of Castor Oil Based Polyurethanes: A Short Review.” Polym. Sci. Ser. B., 57 (4) 292–297 (2015)

    Article  CAS  Google Scholar 

  3. Petrovic, ZS, “Polyurethanes from Vegetable Oils.” Polym. Rev., 48 109–155 (2008)

    Article  CAS  Google Scholar 

  4. Pfister, DP, Xia, Y, Larock, RC, “Recent Advances in Vegetable Oil-Based Polyurethanes.” ChemSusChem, 4 (6) 703–717 (2011)

    Article  CAS  Google Scholar 

  5. Lligadas, G, Ronda, JC, Galià, M, Cádiz, V, “Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current State-of-the-Art.” Biomacromolecules, 11 (11) 2825–2835 (2010)

    Article  CAS  Google Scholar 

  6. Ogunniyi, DS, “Castor Oil: A Vital Industrial Raw Material.” Bioresour. Technol., 97 (9) 1086–1091 (2006)

    Article  CAS  Google Scholar 

  7. Achaya, KT, “Chemical Derivatives of Castor Oil.” J. Am. Oil Chem. Soc., 48 (11) 758–763 (1971)

    Article  CAS  Google Scholar 

  8. Ganetri, I, Tighzert, L, Dony, P, Challioui, A, “New Composites Based on Castor Oil with Isophorone Diisocyanate Polyurethanes and Cellulose Fibers.” J. Mater. Environ. Sci., 4 (4) 571–582 (2013)

    CAS  Google Scholar 

  9. John, MJ, Thomas, S, Biofibres Biocompos. Carbohydr. Polym., 71 (3) 343–364 (2008)

    Article  CAS  Google Scholar 

  10. Teramoto, N, Saitoh, Y, Takahashi, A, Shibata, M, “Biodegradable Polyurethane Elastomers Prepared from Isocyanate-Terminated Poly(ethylene adipate), Castor Oil, and Glycerol.” J. Appl. Polym. Sci., 115 (6) 3199–3204 (2010)

    Article  CAS  Google Scholar 

  11. Zlatani, A, Lava, C, Zhang, W, “Effect of Structure On Properties of Polyols and Polyurethanes Based on Different Vegetable Oils.” J. Polym. Sci. Part B Polym. Phys., 42 (5) 809–819 (2004)

    Article  CAS  Google Scholar 

  12. Guo, A, Demydov, D, Zhang, W, Petrovic, ZS, “Polyols and Polyurethanes from Hydroformylation of Soybean Oil.” J. Polym. Envir., 10 49–52 (2002)

    Article  CAS  Google Scholar 

  13. Guo, A, Cho, Y, Petrovic, ZS, “Structure and Properties of Halogenated and Nonhalogenated Soy-Based Polyols.” J. Polym. Sci. Part A Polym. Chem., 38 (21) 3900–3910 (2000)

    Article  CAS  Google Scholar 

  14. Allauddin, S, Varaprasad, S, Thumu, R, Rao, BVSK, Ramanuj, N, Raju, KVSN, “One-Pot Synthesis and Physicochemical Properties of High Functionality Soy Polyols and Their Polyurethane-Urea Coatings.” Ind. Crops Prod., 85 361–371 (2016)

    Article  CAS  Google Scholar 

  15. Kong, X, Liu, G, Jonathan, MC, “Novel Polyurethane Produced from Canola Oil Based Poly(ether ester) Polyols: Synthesis, Characterization and Properties.” Eur. Polym. J., 48 (12) 2097–2106 (2012)

    Article  CAS  Google Scholar 

  16. Achaya, KT, “Chemical Derivatives of Castor Oil.” J. Am. Oil Chem. Soc., 48 (11) 758–763 (1971)

    Article  CAS  Google Scholar 

  17. Nema, SK, “Production of Polyols Containing Basic Nitrogen.” U.S. Patent 4161482, 1979

  18. Krishnamurthy, VN, Thomas, S, “ISRO Polyol—The Versatile Binder for Composite Solid Propellants for Launch Vehicles and Missiles.” Def. Sci. J., 37 (1) 29–37 (1987)

    Article  CAS  Google Scholar 

  19. Thakur, S, Barua, S, Karak, N, “Self-Healable Castor Oil Based Tough Smart Hyperbranched Polyurethane Nanocomposite with Antimicrobial Attributes.” RSC Adv., 5 2167–2176 (2015)

    Article  CAS  Google Scholar 

  20. Karak, N, Rana, S, Cho, JW, “Synthesis and Characterization of Castor-Oil-Modified Hyperbranched Polyurethanes.” J. Appl. Polym. Sci, 112 (2) 736–743 (2009)

    Article  CAS  Google Scholar 

  21. Thakur, S, Karak, N, “Castor Oil-Based Hyperbranched Polyurethanes as Advanced Surface Coating Materials.” Prog. Org. Coat., 76 (1) 157–164 (2013)

    Article  CAS  Google Scholar 

  22. Das, B, Konwar, U, Mandal, M, Karak, N, “Sunflower Oil Based Biodegradable Hyperbranched Polyurethane as a Thin Film Material.” Ind. Crops Prod., 44 396–404 (2013)

    Article  CAS  Google Scholar 

  23. Moghadam, PN, Yarmohamadi, M, Hasanzadeh, R, Nuri, S, “Preparation of Polyurethane Wood Adhesives by Polyols Formulated with Polyester Polyols Based on Castor Oil.” Int. J. Adhes. Adhes., 68 273–282 (2016)

    Article  CAS  Google Scholar 

  24. Meer, KMS, Sankar, RM, Paul, J, Jaisankara, SN, Mandal, AB, “The Influence of Applied Silica Nanoparticles on a Bio-Renewable Castor Oil Based Polyurethane Nanocomposite and Its Physicochemical Properties.” Phys. Chem. Chem. Phys, 16 9276–9288 (2014)

    Article  Google Scholar 

  25. Ahmad, S, Zafar, F, Sharmin, E, Garg, N, Kashif, M, “Synthesis and Characterization of Corrosion Protective Polyurethanefattyamide/Silica Hybrid Coating Material.” Prog. Org. Coat, 73 (1) 112–117 (2012)

    Article  CAS  Google Scholar 

  26. Williams, GI, Wool, RP, “Composites from Natural Fibers and Soy Oil Resins.” Appl. Compos. Mater., 7 421–432 (2000)

    Article  CAS  Google Scholar 

  27. Lligadas, G, Ronda, JC, Marina, G, Cadiz, V, “Bionanocomposites from Renewable Resources: Epoxidized Linseed Oil − Polyhedral Oligomeric Silsesquioxanes Hybrid Materials.” Biomacromolecules, 7 (12) 3521–3526 (2006)

    Article  CAS  Google Scholar 

  28. Hiroshi, U, Mai, K, Takashi, T, Mitsuru, N, Arimitsu, U, Shiro, K, “Green Nanocomposites from Renewable Resources: Plant Oil − Clay Hybrid Materials.” Chem. Mater., 15 (13) 2492–2494 (2003)

    Article  Google Scholar 

  29. Siyanbola, TO, Sasidhar, K, Anjaneyulu, B, Kumar, KP, Rao, BVSK, Ramanuj, N, Olaofe, O, Akintayo, ET, Raju, KVSN, “Anti-Microbial and Anti-Corrosive Poly (ester amide urethane) Siloxane Modified ZnO Hybrid Coatings from Thevetia Peruviana Seed Oil.” J. Mater. Sci, 48 (23) 8215–8227 (2013)

    Article  CAS  Google Scholar 

  30. Lligadas, G, Callau, L, Ronda, JC, Galia, M, Cadiz, V, “Novel Organic–Inorganic Hybrid materials from Renewable Resources: Hydrosilylation of Fatty Acid Derivatives.” J. Poly. Sci. Part A: Poly. Chem., 43 (24) 6295–6307 (2005)

    Article  CAS  Google Scholar 

  31. Wold, CR, Soucek, MD, “Viscoelastic and Thermal Properties of Linseed Oil-Based Creamer Coatings.” Macromol. Chem. Phys., 201 382–392 (2000)

    Article  CAS  Google Scholar 

  32. Lligadas, G, Ronda, JC, Marina, G, Cadiz, V, “Novel Silicon-Containing Polyurethanes from Vegetable Oils as Renewable Resources. Synthesis and Properties.” Biomacromolecules, 7 (8) 2420–2426 (2006)

    Article  CAS  Google Scholar 

  33. Kamal, MSM, Rajavelu, MS, Sellamuthu, NJ, Asit, BM, “Physicochemical Studies on Polyurethane/Siloxane Cross-Linked Films for Hydrophobic Surfaces by the Sol-Gel Process.” J. Phys. Chem. B, 117 (9) 2682–2694 (2013)

    Article  CAS  Google Scholar 

  34. Ivan, SR, Jaroslava, B, Ivan, K, Helena, V, Radmila, R, Suzana, C, Nada, N, “The Properties of Polyurethane Hybrid Materials Based on Castor Oil.” Mater. Chem. Phys., 132 (1) 74–81 (2012)

    Article  CAS  Google Scholar 

  35. Allauddin, S, Narayan, R, Raju, KVSN, “Synthesis and Properties of Siloxane-Crosslinked Polyurethane urea/Silica Hybrid Films from Castor Oil.” J. Coat. Technol. Res., 11 (3) 397–407 (2014)

    Article  CAS  Google Scholar 

  36. Cumurcu, AA, Erciyes, T, “Synthesis and Properties of Alkoxysilane-Functionalized Urethane Oil/Titania Hybrid Films.” Prog. Org. Coat., 67 (3) 317–323 (2010)

    Article  CAS  Google Scholar 

  37. Akram, D, Sharmin, E, Ahmad, S, “Linseed Polyurethane/Tetraethoxyorthosilane/Fumed Silica Hybrid Nanocomposite Coatings: Physico-Mechanical and Potentiodynamic Polarization Measurements Studies.” Prog. Org. Coat., 77 (5) 957–964 (2014)

    Article  CAS  Google Scholar 

  38. Nayak, P, Mishra, DK, Parida, D, Sahoo, KC, Nanda, M, Lenka, S, Nayak, PL, “Polymers from Renewable Resources. IX. Interpenetrating Polymer Networks Based on Castor Oil Polyurethane Poly(hydroxyethyl methacrylate): Synthesis, Chemical, Thermal, and Mechanical Properties.” J. Appl. Polym. Sci., 63 (5) 671–679 (1997)

    Article  CAS  Google Scholar 

  39. Athawale, VD, Raut, SS, “New Interpenetrating Polymer Networks Based on Uralkyd/Poly(glycidyl methacrylate).” E. Polym. J., 38 (10) 2033–2040 (2002)

    Article  CAS  Google Scholar 

  40. Prashantha, K, Pai, KV, Sherigara, BS, Prasannakumar, S, “Interpenetrating Polymer Networks Based on Polyol Modified Castor Oil Polyurethane and Poly(2- hydroxyethylmethacrylate): Synthesis, Chemical, Mechanical and Thermal Properties.” Bull. Mater. Sci., 24 (5) 535–538 (2001)

    Article  CAS  Google Scholar 

  41. Hsieh, TT, Hsieh, KH, Simon, GP, Tiu, C, Hsu, HP, “Effect of Crosslinking Density on the Physical Properties of Interpenetrating Polymer Networks of Polyurethane and 2- Hydroxyethyl Methacrylate-Teminated Polyurethane.” J. Polym. Res., 5 (3) 153–162 (1998)

    Article  CAS  Google Scholar 

  42. Das, S, Kalita, H, Mohanty, S, Nayak, SK, “Soybean Oil-Based Polyurethane–(Poly)acrylonitrile Interpenetrating Polymer Networks as Transparent Coating Materials.” Adv. Polym. Technol., (2016). https://doi.org/10.1002/adv.21755

    Article  Google Scholar 

  43. Uma, MS, Hama, DS, Choa, SK, Lee, SJ, Kima, K, Lee, JH, Choac, S, Jung, HW, Choia, WJ, “Surface Mechanical Properties of Poly(urethane acrylate)/Silica Hybrid Interpenetrating Polymer Network (IPN) Coatings.” Prog. Org. Coat., 97 166–174 (2016)

    Article  CAS  Google Scholar 

  44. Mihail, I, Dragana, R, Xianmei, W, Maha, LS, Zoran, SP, Thomas, AU, “Highly Functional Polyols from Castor Oil for Rigid Polyurethanes.” Eur. Polym. J., 84 736–749 (2016)

    Article  CAS  Google Scholar 

  45. Savita, K, Aswini, KM, Krishna, AVR, Raju, KVSN, “Organically Modified Montmorillonite Hyperbranched Polyurethane–Urea Hybrid Composites.” Prog. Org. Coat., 60 (1) 54–62 (2007)

    Article  CAS  Google Scholar 

  46. Kishore, KJ, Raju, KVSN, Prathab, B, Tejraj, MA, “Hyperbranched Polyesters: Synthesis, Characterization, and Molecular Simulations.” J. Phys. Chem. B., 111 8801–8811 (2007)

    Article  CAS  Google Scholar 

  47. Varaprasad, S, Allauddin, S, Ramanuj, N, Raju, KVSN, “Synthesis of a Novel Glycerol Based B3-type Monomer and its Application in Hyperbranched Polyester Urethane–Urea Coatings.” RSC Adv., 5 74003–74011 (2015)

    Article  CAS  Google Scholar 

  48. Savita, K, Aswini, KM, Dipak, KC, Raju, KVSN, “Synthesis and Characterization of Hyperbranched Polyesters and Polyurethane Coatings.” J. Poly. Sci. Part A Poly. Chem, 45 (13) 2673–2688 (2007)

    Article  CAS  Google Scholar 

  49. Marcel, SF, Jie, LK, Mustafa, J, “High-Resolution Nuclear Magnetic Resonance Spectroscopy—Applications to Fatty Acids and Triacylglycerols.” Lipids, 32 (10) 1019–1034 (1997)

    Article  Google Scholar 

  50. Ionescu, M, Chemistry and Technology of Polyols for Polyurethanes, Chapter 2. Rapra, Shawbury (2005)

    Google Scholar 

  51. Tran, P, Graiver, D, Narayan, R, “Ozone-Mediated Polyol Synthesis from Soybean Oil.” J. Am. Oil Chem. Soc., 82 (9) 653–659 (2005)

    Article  CAS  Google Scholar 

  52. Pion, F, Jena, KK, Allauddin, S, Ramanuj, N, Raju, KVSN, “Preparation and Characterization of Waterborne Hyperbranched Polyurethane-Urea and Their Hybrid Coatings.” Ind. Eng. Chem. Res., 49 (10) 4517–4527 (2010)

    Article  CAS  Google Scholar 

  53. Kong, X, Liu, G, Curtis, JM, “Novel Polyurethane Produced from Canola Oil Based Poly(ether ester) Polyols: Synthesis, Characterization and Properties.” Eur. Poly. J., 48 (12) 2097–2106 (2012)

    Article  CAS  Google Scholar 

  54. Javni, I, Petrović, ZS, Guo, A, Fuller, R, “Thermal Stability of Polyurethanes Based on Vegetable Oils.” J. Appl. Polym. Sci., 77 (8) 1723–1734 (2000)

    Article  CAS  Google Scholar 

  55. Hablot, E, Zheng, D, Bouquey, M, Avérous, L, “Polyurethanes Based on Castor Oil: Kinetics, Chemical, Mechanical and Thermal Properties.” Macromol. Mat. Eng., 293 (11) 922–929 (2008)

    Article  CAS  Google Scholar 

  56. Petrovic, ZS, Zavargo, Z, Flyn, JH, Macknight, WJ, “Thermal Degradation of Segmented Polyurethanes.” J. Appl. Polym. Sci., 51 (6) 1087–1095 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Asian Paints staffs for their support in characterization, and the authors also thank V. P. Technology and Asian Paints management for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allauddin Shaik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, A., Baidya, K., Nehete, K. et al. Synthesis and characterization of castor oil-based branched polyols from renewable resources and their polyurethane-urea coatings. J Coat Technol Res 16, 387–400 (2019). https://doi.org/10.1007/s11998-018-0118-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-0118-8

Keywords

Navigation