Skip to main content
Log in

Effect of crosslinking density on the physical properties of interpenetrating polymer networks of polyurethane and 2-hydroxyethyl methacrylate-teminated polyurethane

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Interpenetrating polymer networks (IPNs) of 2-hydroxyethyl methacrylate-terminated polyurethane (HPU) and polyurethane (PU) with different crosslinking densities of the PU network were prepared by simultaneous solution polymerization. Dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) show that compatibility of component polymers in IPN formation depends on the crosslinking density of the PU network. Physical properties such as density and water absorption rely on the subtle balance between the degree of phase separation and the crosslinking density of the PU network. In spite of the occurrence of phase separation, the tensile moduli and tensile strength of the IPNs increase with the crosslinking density of the PU network. Morphological observation by scanning electron microscopy revealed different fracture surfaces between the compatible and incompatible IPNs. Surface characteristics of the IPNs, indicated as hydrogen bonding index and hard-to-soft segment ratio, are altered considerably by varying surface morphologies. Improved blood compatibility of IPN membranes is due to the variation of the hydrophilic and hydrophobic domain distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Buist and H. Gudgeon, Advances in Polyurethane Technology, Elsevier, London, 1970.

    Google Scholar 

  2. C. Hepburn, Polyurethane Elastomers, 2nd Ed., Elsevier, New York, 1992.

    Google Scholar 

  3. G. Oertel, Polyurethane Handbook, 2nd Ed., Hanser, New York, 1993.

    Google Scholar 

  4. J. W. Boretos and W. S. Pierce, Science, 158, 1941 (1967).

    Google Scholar 

  5. J. W. Boretos, Pure Appl. Chem., 52, 1851 (1980).

    CAS  Google Scholar 

  6. A. Takahara, J. Tashita, T. Kajiyama and M. Takayanagi, Polymer, 26, 978 (1985).

    CAS  Google Scholar 

  7. A. Takahara, J. Tashita, T. Kajiyama and M. Takayanagi, Polymer, 26, 987 (1985).

    CAS  Google Scholar 

  8. A. Akutsu, Artificial Hearts, Vol. I, Springer-Verlag, Tokyo, 1985.

    Google Scholar 

  9. H. H. Schauwecker, T. Gerlach, H. Planck and E. S. Bucherl, Artificial Organs, 13, 216 (1989).

    CAS  Google Scholar 

  10. A. T. Pennings, K. E. Knol and H. J. Hoppen, Colloid Polym. Sci., 2, 268 (1990).

    Google Scholar 

  11. S. Dumitriu, Polymeric Biomaterials, Marcel Dekker, New York, 1994.

    Google Scholar 

  12. D. Klempner, Angew. Chem., 90, 104 (1978).

    CAS  Google Scholar 

  13. L. H. Sperling, Interpenetrating Polymer Networks and Related Materials, Plenum Press, New York, 1981.

    Google Scholar 

  14. K. H. Hsieh and J. L. Han, J. Polym. Sci., Polym. Phys, 28, 623 (1989).

    Google Scholar 

  15. Y. C. Chou and L. J. Lee, Polym. Eng. Sci., 35, 976 (1995).

    Article  CAS  Google Scholar 

  16. A. Sam, D. J. Hourston, K. Manzoor and D. F. Williams, J. Appl. Polym. Sci., 55, 73 (1995).

    Google Scholar 

  17. P. Nayak, D. K. Mishra, D. Parida, K. C. Sahoo, M. Nanda, S. Lenka and P. L. Nayak, J. Appl. Polym. Sci., 63, 671 (1997).

    Article  CAS  Google Scholar 

  18. J. K. Yeo, L. H. Sperling and D. A. Thomas, Polym. Eng. Sci., 22, 190 (1982).

    Article  Google Scholar 

  19. J. K. Yeo, L. H. Sperling and D. A. Thomas, Polymer, 24, 307 (1983).

    Article  CAS  Google Scholar 

  20. K. H. Hsieh, K. W. Chang and D. C. Liao, Biomed. Eng. Appl. Basis Comm., 6, 517 (1994).

    Google Scholar 

  21. K. H. Hsieh, D. C. Liao, C. Y. Chen and W. Y. Chiu, Polym. Adv. Technol., 7, 265 (1996).

    Article  CAS  Google Scholar 

  22. C. J. Liu, K. H. Hsieh, K. S. Ho and T. T. Hsieh, J. Biomed. Mater. Res., 34, 261 (1997).

    Article  CAS  Google Scholar 

  23. T. T. Hsieh, K. H. Hsieh, G. P. Simon and C. Tiu, Polymer, accepted for publication.

  24. Y. Lai and L. J. Baccei, J. Appl. Polym. Sci., 42, 2039 (1991).

    CAS  Google Scholar 

  25. Y. Lai and L. J. Baccei, J. Appl. Polym. Sci., 42, 3137 (1991).

    Google Scholar 

  26. K. Nakayama, T. Ino and I. Mastubara, J. Macromol. Sci. Chem., A3, 1005 (1969).

    Google Scholar 

  27. T. Tanaka, T. Yokoyama and Y. Yamaguchi, J. Polym. Sci., A-1, 6, 2153 (1968).

    CAS  Google Scholar 

  28. L. H. Sperling and J. J. Fay, Polym. Adv. Technol., 2, 49 (1990).

    Google Scholar 

  29. Q. G. Han, J. Y. Wang, Y. W. Liu and X. Y. Tang, Chem. J. Chinese Univ., 16, 653 (1995).

    CAS  Google Scholar 

  30. J. W. C. Van Bogart, D. A. Bluemke and S. L. Cooper, Polymer, 22, 1428 (1981).

    Google Scholar 

  31. S. S. Kim, Y. M. Lee and C. S. Cho, Polymer, 36, 4497 (1995).

    CAS  Google Scholar 

  32. B. D. Ratner, D. Briggs, M. J. Hearn, S. G. Yoon and P. G. Edelman, Surface Characterization of Biomaterials, Ed. B. D. Rayner, Elsevier, New York, p. 317, 1988.

    Google Scholar 

  33. J. Jacqueline and M. Jozefowicz, Polymeric Biomaterials, Ed. S. Dumitriu, Marcel Dekker, New York, P. 351, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Tang Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, TT., Hsieh, KH., Simon, G.P. et al. Effect of crosslinking density on the physical properties of interpenetrating polymer networks of polyurethane and 2-hydroxyethyl methacrylate-teminated polyurethane. J Polym Res 5, 153–162 (1998). https://doi.org/10.1007/s10965-006-0051-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-006-0051-x

Keywords

Navigation