Skip to main content

Advertisement

Log in

Electrophoretic deposition of nanocrystalline hydroxyapatite on Ti6Al4V/TiO2 substrate

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Hydroxyapatite is a bioactive material that is the main inorganic constituent of human hard tissue (Ca/P ratio of 1.67) whose coatings provide requisite surface bioactivity to the bone implants. In the current work, the characteristics of nanocrystalline hydroxyapatite (HA) coatings, electrophoretically deposited on Ti6Al4V substrate, have been investigated. To enhance the coating’s compatibility, a 0.75 μm thick TiO2 layer was thermally grown as a diffusion barrier prior to electrophoretic deposition of HA. Subsequently, HA was electrophoretically deposited (EPD) at different deposition voltages (100–250 V) while keeping the deposition time as 10 s. Both anodic oxidation during EPD for 10 s and thermal oxidation during sintering at 1000°C for 2 h resulted in the growth of a TiO2 layer thickness of more than 25 μm. Enhancement of voltage also has shown significant influence on the mechanism of the evolution of biphasic microstructures, attributed to the simultaneous growth of TiO2 and HA phases. Optimized distribution of HA and TiO2 phases was evidenced at 200 V, with explicit HA retention as observed via transmission electron microscopy. An empirical relationship is developed to relate the voltage with the suppression of cracking in the deposited coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Santavirta, S, et al., “Biocompatibility of Hydroxyapatite-Coated Hip Prostheses.” Arch. Orthop. Trauma Surg., 110 288–292 (1991)

    Article  CAS  Google Scholar 

  2. Labella, R, Braden, M, Debt, S, “Novel Hydroxyapatite-Based Dental Composites.” Biomaterials, 15 (15) 1197–1200 (1994)

    Article  CAS  Google Scholar 

  3. Paital, SR, Dahotre, NB, “Calcium Phosphate Coatings for Bio-implant Applications: Materials, Performance Factors, and Methodologies.” Mater. Sci. Eng., R, 66 1–70 (2009)

    Article  Google Scholar 

  4. Aksakal, B, Hanyaloglu, C, “Bioceramic Dip Coating on Ti-6Al-4V and 316L SS Implant Materials.” J. Mater. Sci. Mater. Med., 19 (5) 2097–2104 (2008)

    Article  CAS  Google Scholar 

  5. Haslauer, CM, et al., “In Vitro Biocompatibility of Titanium Alloy Discs made Using Direct Metal Fabrication.” Med. Eng. Phys., 32 645–652 (2010)

    Article  Google Scholar 

  6. Hayashi, K, et al., “Evaluation of Metal Implants Coated with Several Types of Ceramics As Biomaterials.” J. Biomed. Mater. Res., 23 (11) 1247–1259 (1989)

    Article  CAS  Google Scholar 

  7. Grecu, M, et al., “Enhancing the Performance of Titanium Surface Via Elaboration of a Nanostructure and a Bioactive Coating.” Universitatea Politehnica Bucuresti Scientific Bulletin Series B, 74 (2) 113–127 (2012)

    CAS  Google Scholar 

  8. Kalmodia, S, et al., “Microstructure, Mechanical Properties and In Vitro Biocompatibility of Spark Plasma Sintered Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Composite.” Mater. Sci. Eng., C, 30 (8) 1162–1169 (2010)

    Article  CAS  Google Scholar 

  9. Balani, K, et al., “Plasma-Sprayed Carbon Nanotube Reinforced Hydroxyapatite Coatings and their Interaction with Human Osteoblasts In Vitro.” Biomaterials, 28 618–624 (2007)

    Article  CAS  Google Scholar 

  10. Balani, K, et al., “Tribological Behavior of Plasma Sprayed Carbon Nanotube Reinforced Hydroxyapatite-Coating in Physiological Solution.” Acta Biomater., 3 (6) 944–951 (2007)

    Article  CAS  Google Scholar 

  11. de Sena, L, et al., “Hydroxypatite Deposition by Electrophoresis on Titanium Sheets with Different Surface Finishing.” J. Biomed. Mater. Res., 60 1–7 (2002)

    Article  Google Scholar 

  12. Ma, J, Wang, C, Peng, KW, “Electrophoretic Deposition of Porous Hydroxyapatite Scaffold.” Biomaterials, 24 3505–3510 (2003)

    Article  CAS  Google Scholar 

  13. Nie, X, Leyland, A, Matthews, A, “Deposition of Layered Bioceramic Hydroxyapatite/TiO2 Coatings on Titanium Alloys Using a Hybrid Technique of Micro-arc Oxidation and Electrophoresis.” Surf. Coat. Technol., 125 407–414 (2000)

    Article  CAS  Google Scholar 

  14. Ducheyne, P, et al., “Calcium Phosphate Ceramic Coatings on Porous Titanium: Effect of Structure and Composition on Electrophoretic Deposition, Vacuum Sintering and In Vitro Dissolution.” Biomaterials, 11 244–254 (1990)

    Article  CAS  Google Scholar 

  15. Manso, M, et al., “Electrodeposition of Hydroxyapatite Coatings in Basic Conditions.” Biomaterials, 21 1755–1761 (2000)

    Article  CAS  Google Scholar 

  16. Mavis, B, Tas, AC, “Dip Coating of Calcium Hydroxyapatite on Ti-6Al-4V Substrates.” J. Am. Ceram. Soc., 83 989–991 (2000)

    Article  CAS  Google Scholar 

  17. García-Sanz, FJ, et al., “Hydroxyapatite Coatings: A Comparative Study Between Plasma-Spray and Pulsed Laser Deposition Techniques.” J. Mater. Sci. Mater. Med., 8 861–865 (1997)

    Article  Google Scholar 

  18. Tercero, JE, et al., “Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility.” Mater. Sci. Eng., C, 29 2195–2202 (2009)

    Article  CAS  Google Scholar 

  19. Montenero, A, et al., “Sol–Gel Derived Hydroxyapatite Coatings on Titanium Substrate.” J. Mater. Sci., 35 (11) 2791–2797 (2000)

    Article  CAS  Google Scholar 

  20. Li, P, Groot, Kd, Kokubo, T, “Bioactive Ca10(PO4)6(OH)2-TiO2 Composite Coating Prepared by Sol–Gel Process.” J. Sol-Gel Sci. Technol., 7 27–34 (1996)

    Article  CAS  Google Scholar 

  21. Oshida, Y, Bioscience and Bioengineering of Titanium Materials. Elsevier, Amsterdam, 2007

    Google Scholar 

  22. Leon, B, Jansen, J, Thin Calcium Phosphate Coatings for Medical Implants, p. 356. Springer-Verlag, New York, 2009

    Book  Google Scholar 

  23. Basu, RN, Randall, CA, Mayo, MJ, “Fabrication of Dense Zirconia Electrolyte Films for Tubular Solid Oxide Fuel Cells by Electrophoretic Deposition.” J. Am. Ceram. Soc., 84 (1) 33–40 (2001)

    Article  CAS  Google Scholar 

  24. Zhang, YY, et al., “Electrochemical Deposition of Hydroxyapatite Coatings on Titanium.” Trans. Nonferrous Met. Soc. China, 16 (3) 633–637 (2006)

    Article  CAS  Google Scholar 

  25. Wang, YC, Leu, IC, Hon, MH, “Kinetics of Electrophoretic Deposition for Nanocrystalline Zinc Oxide Coatings.” J. Am. Ceram. Soc., 87 84–88 (2004)

    Article  CAS  Google Scholar 

  26. Ruys, AJ, et al., “Sintering Effects on the Strength Hydroxyapatite.” Biomaterials, 16 409–415 (1995)

    Article  CAS  Google Scholar 

  27. Wei, M, Evans, JH, Wentrup-Byrne, E, “Decomposition of Dual Hydroxyapatite/Fluorapatite Coatings on Metal Substrates.” J. Aust. Ceram. Soc., 36 (1) 47–52 (2000)

    CAS  Google Scholar 

  28. Wei, M, et al., “Hydroxyapatite-Coated Metals: Interfacial Reactions During Sintering.” J. Mater. Sci. Mater. Med., 16 101–106 (2005)

    Article  CAS  Google Scholar 

  29. Wei, M, et al., “Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual-Coating Approach.” J. Sol-Gel Sci. Technol., 21 (1/2) 39–48 (2001)

    Article  CAS  Google Scholar 

  30. Albayraka, O, El-Atwani, O, Altintas, S, “Hydroxyapatite Coating on Titanium Substrate by Electrophoretic Deposition Method: Effects of Titanium Dioxide Inner Layer on Adhesion Strength and Hydroxyapatite Decomposition.” Surf. Coat. Technol., 202 2482–2487 (2007)

    Article  Google Scholar 

  31. Nie, X, et al., “Effects of Solution pH and Electrical Parameters on Hydroxyapatite Coatings Deposited by a Plasma-Assisted Electrophoresis Technique.” J. Biomed. Mater. Res., 57 612–618 (2001)

    Article  CAS  Google Scholar 

  32. Kumar, RR, Wang, M, “Functionally Graded Bioactive Coatings of Hydroxyapatite/Titanium Oxide Composite System.” Mater. Lett., 55 133–137 (2002)

    Article  Google Scholar 

  33. Karpagavalli, R, et al., “Corrosion Behavior and Biocompatibility of Nanostructured TiO2 Film on Ti6Al4V.” J. Biomed. Mater. Res., Part A, 83A (4) 1087–1095 (2007)

    Article  CAS  Google Scholar 

  34. Cui, C, et al., “Fabrication and Biocompatibility of Nano-TiO2/Titanium Alloys Biomaterials.” Mater. Lett., 59 3144–3148 (2005)

    Article  CAS  Google Scholar 

  35. Mondragon-Cortez, P, Vargas-Gutierrez, G, “Electrophoretic Deposition of Hydroxyapatite Submicron Particles at High Voltages.” Mater. Lett., 58 1336–1339 (2004)

    Article  CAS  Google Scholar 

  36. Meng, X, et al., “Effects of Applied Voltages on Hydroxyapatite Coating of Titanium by Electrophoretic Deposition.” J. Biomed. Mater. Res. B Appl. Biomater., 78 373–377 (2006)

    Google Scholar 

  37. Dubey, M, et al., “TiO2 Nanotube Membranes on Transparent Conducting Glass For High Efficiency Dye-Sensitized Solar Cells.” Nanotechnology, 22 (28) 285201.1–285201.9 (2011)

    Article  Google Scholar 

  38. Wang, N, et al., “Evaluation of Bias Potential Enhanced Photocatalytic Degradation of 4-Chlorophenol with TiO2 Nanotube Fabricated by Anodic Oxidation Method.” Chem. Eng. J., 146 30–35 (2009)

    Article  CAS  Google Scholar 

  39. Yue-qin, W, et al., “HA Coating on Titanium with Nanotubular Anodized TiO2 Intermediate Layer via Electrochemical Deposition.” Trans. Nonferrous Met. Soc. China, 18 631–635 (2008)

    Article  Google Scholar 

  40. Park, HH, et al., “Bioactive and Electrochemical Characterization of TiO2 Nanotubes on Titanium via Anodic Oxidation.” Electrochim. Acta, 55 (20) 6109–6114 (2010)

    Article  CAS  Google Scholar 

  41. Azad, AM, “Gas Phase Nanofication: A Strategy to Impart Fast Response in Sensors.” In: Ahmed, W, Jackson, MJ (eds.) Emerging Nanotechnologies for Manufacturing, pp. 17–57. William Andrew Publishers/Academic Press, New York, 2009

    Google Scholar 

  42. Ciou, S-J, Fung, K-Z, Chiang, K-W, “The Mathematical Expression for Kinetics of Electrophoretic Deposition and the Effects of Applied Voltage.” J. Power Sources, 172 358–362 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KB acknowledges funding from MHRD, and Department of Biotechnology (DBT) India. A special thanks to Mr. Ramashankar and Mr. Praveen is extended for their assistance. TM acknowledges funding by Dept. of Scientific and Industrial Research (Govt. of India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kantesh Balani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, P., Mandal, T., Prakash, P. et al. Electrophoretic deposition of nanocrystalline hydroxyapatite on Ti6Al4V/TiO2 substrate. J Coat Technol Res 10, 263–275 (2013). https://doi.org/10.1007/s11998-012-9438-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-012-9438-2

Keywords

Navigation