Skip to main content
Log in

Semiconductor metal oxide compounds based gas sensors: A literature review

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (LPG), H2S, NH3, CO2, acetone, ethanol, other volatile compounds and hazardous gases. Moreover, it is revealed that the alloy/composite made up of SMO gas sensors show better gas response than their counterpart single component gas sensors, i.e., they are found to enhance the 4S characteristics namely speed, sensitivity, selectivity and stability. Improvement of such types of sensors used for detection of various air pollutants, which are reported in last two decades, is highlighted herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuwabara M, Ide T. CO gas sensitivity in porous semiconducting barium-titanate ceramics. American Ceramic Society Bulletin, 1987, 66(9): 1401–1405

    Google Scholar 

  2. Chiu C M, Chang Y H. The structure, electrical and sensing properties for CO of the La0.8Sr0.2Co1-x Ni x O3-δ system. Materials Science and Engineering A, 1999, 266(1–2): 93–98

    Article  Google Scholar 

  3. Patil D R. Everyman’s Science, 2011, XLVI(3): 155

    Google Scholar 

  4. Azad A M, Akbar S A, Mhaisalkar S G, et al. Solid-state gas sensors: a review. Journal of the Electrochemical Society, 1992, 139(12): 3690–3704

    Article  Google Scholar 

  5. Moseley P T. Material and Mechanism in Semiconducting Gas Sensor, Sensor Technology, System and Application. IOP Publishing, 1990

    Google Scholar 

  6. Joseph B, Gopchandran K G, Manoj P K, et al. Optical and electrical properties of zinc oxide films prepared by spray pyrolysis. Bulletin of Materials Science, 1999, 22(5): 921–926

    Article  Google Scholar 

  7. Dayan N J, Sainkar S R, Karekar R N, et al. Formulation and characterization of ZnO:Sb thick-film gas sensors. Thin Solid Films, 1998, 325(1–2): 254–258

    Article  Google Scholar 

  8. Krishnan B, Nampoori V P N. Screen printed nanosized ZnO thick film. Bulletin of Materials Science, 2005, 28(3): 239–242

    Article  Google Scholar 

  9. Licari J J, Enlow L R. Hybrid Microcircuit Technology Handbook. 2nd ed. Park Ridge, NJ, USA: Noyes Publications, 1998

    Google Scholar 

  10. Patil A V, Dighavkar C G, Borse R Y. NO2 gas sensing properties of screen printed ZnO thick films. Sensors & Transducers Journal, 2009, 101(2): 96–103

    Google Scholar 

  11. Moseley P T, Williams D E, Norris J O W, et al. Electrical conductivity and gas sensitivity of some transition metal tantalates. Sensors and Actuators, 1988, 14(1): 79–91

    Article  Google Scholar 

  12. Moseley P T, Williams D E. A selective ammonia sensor. Sensors and Actuators B: Chemical, 1990, 1(1–6): 113–115

    Article  Google Scholar 

  13. Moseley P T. Materials selection for semiconductor gas sensors. Sensors and Actuators B: Chemical, 1992, 6(1–3): 149–156

    Article  Google Scholar 

  14. Matsuura S. New developments and applications of gas sensors in Japan. Sensors and Actuators B: Chemical, 1993, 13(1–3): 7–11

    Article  Google Scholar 

  15. Bernasik A, Radecka M, Rekas M, et al. Electrical properties of Cr-doped and Nb-doped TiO2 thin films. Applied Surface Science, 1993, 65–66: 240–245

    Article  Google Scholar 

  16. Tang H, Prasad K, Sanjines R, et al. TiO2 anatase thin films as gas sensors. Sensors and Actuators B: Chemical, 1995, 26(1–3): 71–75

    Article  Google Scholar 

  17. Mizsei J. How can sensitive and selective semiconductor gas sensors be made? Sensors and Actuators B: Chemical, 1995, 23(2–3): 173–176

    Article  Google Scholar 

  18. Ferroni M, Guidi V, Martinelli G, et al. Characterization of a nanosized TiO2 gas sensor. Nanostructured Materials, 1996, 7(7): 709–718

    Article  Google Scholar 

  19. Lin H M, Keng C H, Tung C Y. Gas-sensing properties of nanocrystalline TiO2. Nanostructured Materials, 1997, 9(1–8): 747–750

    Article  Google Scholar 

  20. Zakrzewska K, Radecka M, Rekas M. Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films. Thin Solid Films, 1997, 310(1–2): 161–166

    Article  Google Scholar 

  21. Sharma R K, Bhatnagar M C, Sharma G L. Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor. Sensors and Actuators B: Chemical, 1997, 45(3): 209–215

    Article  Google Scholar 

  22. Sharma R K, Bhatnagar M C. Improvement of the oxygen gas sensitivity in doped TiO2 thick films. Sensors and Actuators B: Chemical, 1999, 56(3): 215–219

    Article  Google Scholar 

  23. Jayaraman V, Gnanasekar K I, Prabhu E, et al. Preparation and characterisation of Cr2-x Ti x O3+δ and its sensor properties. Sensors and Actuators B: Chemical, 1999, 55(2–3): 175–179

    Article  Google Scholar 

  24. Carotta M C, Ferroni M, Gnani D, et al. Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sensors and Actuators B: Chemical, 1999, 58(1–3): 310–317

    Article  Google Scholar 

  25. Yamada Y, Seno Y, Masuoka Y, et al. NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties. Sensors and Actuators B: Chemical, 2000, 66(1–3): 164–166

    Article  Google Scholar 

  26. Ferroni M, Carotta M C, Guidi V, et al. Structural characterization of Nb-TiO2 nanosized thick-films for gas sensing application. Sensors and Actuators B: Chemical, 2000, 68(1–3): 140–145

    Article  Google Scholar 

  27. Gao L, Li Q, Song Z, et al. Preparation of nano-scale titania thick film and its oxygen sensitivity. Sensors and Actuators B: Chemical, 2000, 71(3): 179–183

    Article  Google Scholar 

  28. Rothschild A, Edelman F, Komem Y, et al. Sensing behavior of TiO2 thin films exposed to air at low temperatures. Sensors and Actuators B: Chemical, 2000, 67(3): 282–289

    Article  Google Scholar 

  29. Sberveglieri G, Comini E, Faglia G, et al. Titanium dioxide thin films prepared for alcohol microsensor applications. Sensors and Actuators B: Chemical, 2000, 66(1–3): 139–141

    Article  Google Scholar 

  30. Wang Y D, Chen Z X, Li Y F, et al. Electrical and gas-sensing properties of WO3 semiconductor material. Solid-State Electronics, 2001, 45(5): 639–644

    Article  Google Scholar 

  31. Savage N O, Akbar S A, Dutta P K. Titanium dioxide based high temperature carbon monoxide selective sensor. Sensors and Actuators B: Chemical, 2001, 72(3): 239–248

    Article  Google Scholar 

  32. Savage N O, Chwieroth B, Ginwalla A, et al. Composite n-p semiconducting titanium oxides as gas sensors. Sensors and Actuators B: Chemical, 2001, 79(1): 17–27

    Article  Google Scholar 

  33. Jiao Z, Chen F, Su R, et al. Study on the characteristics of Ag doped CuO-BaTiO3 CO2 sensors. Sensors, 2002, 2(9): 366–373

    Article  Google Scholar 

  34. Guidi V, Butturi M A, Carotta M C, et al. Gas sensing through thick film technology. Sensors and Actuators B: Chemical, 2002, 84(1): 72–77

    Article  Google Scholar 

  35. Li Y, Wlodarski W, Galatsis K, et al. Gas sensing properties of ptype semiconducting Cr-doped TiO2 thin films. Sensors and Actuators B: Chemical, 2002, 83(1–3): 160–163

    Article  Google Scholar 

  36. Karunagaran B, Kumar R T R, Mangalaraj D, et al. Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films. Crystal Research and Technology, 2002, 37(12): 1285–1292

    Article  Google Scholar 

  37. Arbiol J, Cerda J, Dezanneau G, et al. Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. Journal of Applied Physics, 2002, 92(2): 853–861

    Article  Google Scholar 

  38. Ruiz AM, Sakai G, Cornet A, et al. Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sensors and Actuators B: Chemical, 2003, 93(1–3): 509–518

    Article  Google Scholar 

  39. Shaw G A, Parkin I P, Williams D E. Atmospheric pressure chemical vapour deposition of Cr2 − x TixO3 (CTO) thin films (⩽ 3 mμm) on to gas sensing substrates. Journal of Materials Chemistry, 2003, 13(12): 2957–2962

    Article  Google Scholar 

  40. Fergus J W. Doping and defect association in oxides for use in oxygen sensors. Journal of Materials Science, 2003, 38(21): 4259–4270

    Article  Google Scholar 

  41. Li W, Ni C, Lin H, et al. Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics, 2004, 96(11): 6663–6668

    Article  Google Scholar 

  42. Baraton MI, Merhari L. Surface chemistry of TiO2 nanoparticles: influence on electrical and gas sensing properties. Journal of the European Ceramic Society, 2004, 24(6): 1399–1404

    Article  Google Scholar 

  43. Tamaki J, Miyaji A, Makinodan J, et al. Effect of micro-gap electrode on detection of dilute NO2 using WO3 thin film microsensors. Sensors and Actuators B: Chemical, 2005, 108(1–2): 202–206

    Article  Google Scholar 

  44. Obida M Z, Afify H H, Abou-Helal M O, et al. Egyptian Journal of Solids, 2005, 28(1): 35

    Google Scholar 

  45. San Andres E, Lique M T, Prado A D, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005, 23(6): 1523

    Article  Google Scholar 

  46. Patil S A, Patil L A. Surface modified TTO thick film resistors for NH3 gas sensing. Sensors & Transducers Journal, 2006, 71(9): 721–728

    Google Scholar 

  47. Patil D R, Patil L A, Jain G H, et al. Surface activated ZnO thick film resistors for LPG gas sensing. Sensors & Transducers Journal, 2006, 74(12): 874–883

    Google Scholar 

  48. Kagata M, Abe Y. CARTS USA, 2006, 3

    Google Scholar 

  49. Jain G H, Patil L A. Gas sensing properties of Cu and Cr activated BST thick films. Bulletin of Materials Science, 2006, 29(4): 403–411

    Article  Google Scholar 

  50. Chaudhari G N, Bambole D R, Bodade A B, et al. Characterization of nanosized TiO2 based H2S gas sensor. Journal of Materials Science, 2006, 41(15): 4860–4864

    Article  Google Scholar 

  51. Wagh M S, Jain G H, Patil D R, et al. Modified zinc oxide thick film resistors as NH3 gas sensor. Sensors and Actuators B: Chemical, 2006, 115(1): 128–133

    Article  Google Scholar 

  52. Viricelle J P, Pijolat C, Riviere B, et al. Compatibility of screenprinting technology with micro-hotplate for gas sensor and solid oxide micro fuel cell development. Sensors and Actuators B: Chemical, 2006, 118(1–2): 263–268

    Article  Google Scholar 

  53. Maso N, Beltran H, Cordoncillo E, et al. Synthesis and electrical properties of Nb-doped BaTiO3. Journal of Materials Chemistry, 2006, 16(30): 3114–3119

    Article  Google Scholar 

  54. Khadayate R S, Sali J V, Patil P P. Acetone vapor sensing properties of screen printed WO3 thick films. Talanta, 2007, 72(3): 1077–1081

    Article  Google Scholar 

  55. Khadayate R S, Waghulde R B, Wankhede M G, et al. Ethanol vapour sensing properties of screen printed WO3 thick films. Bulletin of Materials Science, 2007, 30(2): 129–133

    Article  Google Scholar 

  56. Jain G H, Patil L A, Patil P P, et al. Studies on gas sensing performance of pure and modified barium strontium titanate thick film resistors. Bulletin of Materials Science, 2007, 30(1): 9–17

    Article  Google Scholar 

  57. Al-Homoudi I A, Thakur J S, Naik R, et al. Anatase TiO2 films based CO gas sensor: Film thickness, substrate and temperature effects. Applied Surface Science, 2007, 253(21): 8607–8614

    Article  Google Scholar 

  58. Alessandri I, Comini E, Bontempi E, et al. Cr-inserted TiO2 thin films for chemical gas sensors. Sensors and Actuators B: Chemical, 2007, 128(1): 312–319

    Article  Google Scholar 

  59. Kadu A V, Gedam N N, Chaudhari G N. Detection of hydrogen sulphide gas sensor based nanostructured Ba2CrMoO6 thick films. Sensors & Transducers Journal, 2007, 85(11): 1728–1738

    Google Scholar 

  60. Fang X, Oh J T. Microstructure and electrical properties of Nb2O5 doped titanium dioxide. Materials Science and Engineering B, 2007, 136(1): 15–19

    Article  Google Scholar 

  61. Sonawane N B, Patil D R, Patil L A. CuO-modified WO3 sensor for the detection of a ppm level H2S gas at room temperature. Sensors & Transducers Journal, 2008, 93(6): 82–91

    Google Scholar 

  62. Joshi A, Gangal S A, Padma N, et al. BARC Newsletters, 2008, 297: 236

    Google Scholar 

  63. Baviskar H M, Deo V V, Patil D R, et al. Study of room temperature H2S gas sensing behavior of CuO-modified BSST thick film resistors. Sensors & Transducers Journal, 2008, 92(5): 24–31

    Google Scholar 

  64. More A M, Gunjakar J L, Lokhande C D. Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films. Sensors and Actuators B: Chemical, 2008, 129(2): 671–677

    Article  Google Scholar 

  65. Dighavkar C G, Patil A V, Borse R Y, et al. Effect of firing temperature on electrical and structural characteristics of screen printed TiO2 thick films. Optoelectronics and Advanced Materials — Rapid Communication, 2009, 3(10): 1013–1017

    Google Scholar 

  66. Patil A V, Dighavkar C G, Sonawane S K, et al. Effect of firing temperature on electrical and structural characteristics of screen printed ZnO thick films. Optoelectronics and Advanced Materials — Rapid Communication, 2009, 3(9): 879–883

    Google Scholar 

  67. Dighavkar C G, Patil A V, Patil S J, et al. Ammonia gas sensing performance of Cr2O3-loaded TiO2 thick film resistors. Solid State Science and Technology, 2009, 17(2): 197–207

    Google Scholar 

  68. Dighavkar C G, Patil A V, Patil S J, et al. Effect on H2S gas sensing performance of Nb2O5 addition to TiO2 thick films. Sensors & Transducers Journal, 2009, 109(10): 117–125

    Google Scholar 

  69. Patil A V, Dighavkar C G, Sonawane S K, et al. Formulation and characterization of Cr2O3 doped ZnO thick films as H2S gas sensor. Sensors & Transducers Journal, 2009, 108(9): 189–197

    Google Scholar 

  70. Kumar V, Srivastava S K, Jain K. Cobalt doped SnO2 thick film gas sensors: conductance and gas response characteristics for LPG and CNG gas. Sensors & Transducers Journal, 2009, 101(2): 60–72

    Google Scholar 

  71. Patil A V, Dighavkar C G, Borse R Y. NO2 gas sensing properties of screen printed ZnO thick films. Sensors & Transducers Journal, 2009, 101(2): 96–103

    Google Scholar 

  72. Dighavkar C G, Patil A V, Patil S J, et al. Invertis Journal of Science & Technology, 2010, 3(3): 184

    Google Scholar 

  73. Patil A V, Dighavkar C G, Sonawane S K, et al. Study of microstructural parameters of screen printed ZnO thick film sensors. Sensors & Transducers Journal, 2010, 117(6): 62–70

    Google Scholar 

  74. Khadayate R S, Patil P P. Invertis Journal of Science & Technology, 2010, 3(3): 194

    Google Scholar 

  75. Abadi M H S, Hamidon M N, Shaari A H, et al. Characterization of mixed xWO3(1 − x)Y2O3 nanoparticle thick film for gas sensing application. Sensors, 2010, 10(5): 5074–5089

    Article  Google Scholar 

  76. Khadayate R S, Patil P P. CO gas sensing properties of screen printed SnO2 thick films. Journal of Optoelectronics and Advanced Materials, 2010, 12(6): 1338–1342

    Google Scholar 

  77. Dighavkar C G, Patil A V, Patil S J, et al. Effect on ethanol gas sensing performance of cu addition to TiO2 thick films. Sensors & Transducers Journal, 2010, 116(5): 28–37

    Google Scholar 

  78. Dighavkar C, Patil A, Patil S, et al. Al-doped TiO2 thick film resistors as H2S gas sensor. Sensors & Transducers Journal, 2010, 9(Special Issue): 39–47

    Google Scholar 

  79. Gaikwad V B, Patil R L, Deore MK, et al. Gas sensing properties of pure and Cr activated WO3 thick film resistors. Sensors & Transducers Journal, 2010, 120(9): 38–52

    Google Scholar 

  80. Patil A V, Dighavkar C G, Sonawane S K, et al. Formulation and characterization of Cu doped ZnO thick films as LPG gas sensor. Sensors & Transducers Journal, 2010, 9(Special Issue): 11–20

    Google Scholar 

  81. Deore M K, Gaikwad V B, Pawar N K, et al. Preparation and study the electrical, structural and gas sensing properties of ZnO thick film resistor. Sensors & Transducers Journal, 2010, 119(8): 117–128

    Google Scholar 

  82. Patil G E, Kajale D D, Shinde S D, et al. Effect of annealing temperature on gas sensing performance of SnO2 thin films prepared by spray pyrolysis. Sensors & Transducers Journal, 2010, 9(Special Issue): 96–108

    Google Scholar 

  83. Wang C, Yin L, Zhang L, et al. Metal oxide gas sensors: sensitivity and influencing factors. Sensors, 2010, 10(3): 2088–2106

    Article  Google Scholar 

  84. Patil A V, Dighavkar C G, Sonawane S K, et al. Influence of Nb2O5 doping on ZnO thick film gas sensors. Journal of Optoelectronics and Advanced Materials, 2010, 12(6): 1255–1261

    Google Scholar 

  85. Chaudhari R M, Gaikwad V B, Hire P D, et al. Studies of gas sensing performance of barium zirconate (BaZrO3). Sensors & Transducers Journal, 2011, 127(4): 76–87

    Google Scholar 

  86. Chavan D N, Gaikwad V B, Patil G E, et al. CdO doped indium oxide thick film as a low temperature H2S gas sensor. Sensors & Transducers Journal, 2011, 129(6): 122–134

    Google Scholar 

  87. Shelke P N, Jadkar S R, Khollam Y B, et al. Journal of Nano- and Electronic Physics, 2011, 3(1): 859

    Google Scholar 

  88. Rao M C, Hussain O M. Research Journal of Chemical Sciences, 2011, 1(7): 76

    Google Scholar 

  89. Ahire D V, Shinde S D, Patil G E, et al. Preparation of MoO3 thin films by spray pyrolysis and ITS gas sensing performance. International Journal on Smart Sensing and Intelligent Systems, 2012, 5(3): 592–605

    Google Scholar 

  90. Deshmukh S B, Bari R H, Patil G E, et al. Preparation and characterization of zirconia based thick film resistor as an ammonia gas sensor. International Journal on Smart Sensing and Intelligent Systems, 2012, 5(3): 540–558

    Google Scholar 

  91. Dunnill C W, Noimark S, Parkin I P. Silver loaded WO3 − x /TiO2 composite multifunctional thin films. Thin Solid Films, 2012, 520(17): 5516–5520

    Article  Google Scholar 

  92. Pawar N K, Kajale D D, Patil G E, et al. Nanostructured Fe2O3 thick film as an ethanol sensor. International Journal on Smart Sensing and Intelligent Systems, 2012, 5(2): 441–457

    Google Scholar 

  93. Iftimie N, Crisan M, Braileanu A, et al. On the sensing gas properties of titanium dioxide films. Journal of Optoelectronics and Advanced Materials, 2008, 10(9): 2363–2366

    Google Scholar 

  94. Sahay P P, Nath R K. Al-doped zinc oxide thin films for liquid petroleum gas (LPG) sensors. Sensors and Actuators B: Chemical, 2008, 133(1): 222–227

    Article  Google Scholar 

  95. Satyanarayana L, Reddy K M, Manorama S V. Synthesis of nanocrystalline Ni1 − x CoxMnxFe2 − x O4: a material for liquefied petroleum gas sensing. Sensors and Actuators B: Chemical, 2003, 89(1–2): 62–67

    Article  Google Scholar 

  96. Patil D R, Patil L A. Cr2O3-modified ZnO thick film resistors as LPG sensors. Talanta, 2009, 77(4): 1409–1414

    Article  Google Scholar 

  97. Chaudhari G N. LPG-sensing properties of perovskite BiFe0.6Mn0.4O3 nanomaterials. Journal of Optoelectronics and Advanced Materials, 2007, 9(7): 2270–2274

    Google Scholar 

  98. Mitra P, Mondal S. Hydrogen and LPG sensing properties of SnO2 films obtained by direct oxidation of SILAR deposited SnS. Bulletin of the Polish Academy of Sciences-Technical Sciences, 2008, 56(3): 295–300

    Google Scholar 

  99. Garje A D, Aiyer R C. Effect of decomposition temperature on electrical and gas sensing properties of nano SnO2 based thick film resistors. Sensors Letters, 2006, 4(4): 380–387

    Article  Google Scholar 

  100. Jain K, Pant R P, Lakshmikumar S T. Effect of Ni doping on thick film SnO2 gas sensor. Sensors and Actuators B: Chemical, 2006, 113(2): 823–829

    Article  Google Scholar 

  101. Srivastava A, Jain K, Rashmi, et al. Study of structural and microstructural properties of SnO2 powder for LPG and CNG gas sensors. Materials Chemistry and Physics, 2006, 97(1): 85–90

    Article  Google Scholar 

  102. Shrivastava A, Rashmi, Jain K. Study on ZnO-doped tin oxide thick film gas sensors. Materials Chemistry and Physics, 2007, 105(2–3): 385–390

    Article  Google Scholar 

  103. Inamdar A D, Aiyer R C. Asian Journal of Physics, 2005, 9(1): 1

    Google Scholar 

  104. Niranjan R S, Mulla I S, Vijayamohanan K. National Seminar on Physics and Technology of Sensors (NSPTS), Pune, India, 2004

    Google Scholar 

  105. Tudorache F, Rezlescu E, Popa P D, et al. Study of some simple ferrites as reducing gas sensors. Journal of Optoelectronics and Advanced Materials, 2008, 10(7): 1889–1893

    Google Scholar 

  106. Raju A R, Rao C N. Gas-sensing characteristics of ZnO and copper-impregnated ZnO. Sensors and Actuators B: Chemical, 1991, 3(4): 305–310

    Article  Google Scholar 

  107. Jain G H, Patil L A, Wagh M S, et al. Surface modified BaTiO3 thick film resistors as H2S gas sensors. Sensors and Actuators B: Chemical, 2006, 117(1): 159–165

    Article  Google Scholar 

  108. Kersen U. Gas sensing properties of nanocrystalline metal oxide powders produced by thermal decomposition and mechanochemical processing. Dissertation for the Doctoral Degree. Otaniemi, Espoo, Finland: Helsinki University of Technology, 2003

    Google Scholar 

  109. Rumyantseva M, Labeau M, Delabouglise G, et al. Copper and nickel doping effect on interaction of SnO2 films with H2S. Journal of Materials Chemistry, 1997, 7(9): 1785–1790

    Article  Google Scholar 

  110. Saraladevi G, Rao S M V J. Journal of the Electrochemical Society, 1995, 142: 8

    Article  Google Scholar 

  111. Tamaki J, Maekawa T, Miura N, et al. CuO-SnO2 element for highly sensitive and selective detection of H2S. Sensors and Actuators B: Chemical, 1992, 9(3): 197–203

    Article  Google Scholar 

  112. Patil L A, Patil D R. Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature. Sensors and Actuators B: Chemical, 2006, 120(1): 316–323

    Article  Google Scholar 

  113. Chowdhuri A, Gupta V, Sreenivas K, et al. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Applied Physics Letters, 2004, 84(7): 1180–1182

    Article  Google Scholar 

  114. Wu Y, Tong M, He X, et al. Thin film sensors of SnO2-CuO-SnO2 sandwich structure to H2S. Sensors and Actuators B: Chemical, 2001, 79(2–3): 187–191

    Google Scholar 

  115. Katti V R, Debnath A K, Muthe K P, et al. Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation. Sensors and Actuators B: Chemical, 2003, 96(1–2): 245–252

    Article  Google Scholar 

  116. Patil L A, Pathan I G. Journal of Nano- and Electronic Physics, 2011, 3(1): 433

    Google Scholar 

  117. Xu C N, Miura N, Ishida Y, et al. Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element. Sensors and Actuators B: Chemical, 2000, 65(1–3): 163–165

    Article  Google Scholar 

  118. Patil D R, Patil L A. Preparation and study of NH3 gas sensing behavior of Fe2O3 doped ZnO thick film resistors. Sensors & Transducers Journal, 2006, 70(8): 661–670

    Google Scholar 

  119. Ishihara T, Kometani K, Mizuhara Y, et al. Mixed oxide capacitor of CuO-BaTiO3 as a new type CO2 gas sensor. Journal of the American Ceramic Society, 1992, 75(3): 613–618

    Article  Google Scholar 

  120. Miura N, Yan Y, Sato M, et al. Solid-state potentiometric CO2 sensors using anion conductor and metal carbonate. Sensors and Actuators B: Chemical, 1995, 24(1–3): 260–265

    Article  Google Scholar 

  121. Imanaka N, Murata T, Kawasato T, et al. CO2 detection with lithium solid electrolyte sensors. Sensors & Transducers B, 1993, 13(1–3): 476–479

    Article  Google Scholar 

  122. Telipan G, Ignat M, Vlad A, et al. Lanthanum complex for gas sensing. Journal of Optoelectronics and Advanced Materials, 2008, 10(12): 3409–3412

    Google Scholar 

  123. Chaudhari G N, Pawar M J. Ethanol sensing performances of modified CoFe2O4 nanocrystals prepared by polymerizable complex route. Journal of Optoelectronics and Advanced Materials, 2008, 10(10): 2574–2577

    Google Scholar 

  124. Patil D R, Patil L A, Amalnerkar D P. Ethanol gas sensing properties of Al2O3-doped ZnO thick film resistors. Bulletin of Materials Science, 2007, 30(6): 553–559

    Article  Google Scholar 

  125. Ivanov P T. Design, fabrication and characterization of thick film gas sensors. Dissertation for the Doctoral Degree. Tarragona, Spain: Rovira i Virgili University, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nishad Gopal Deshpande or Rajendra Ramdas Ahire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.J., Patil, A.V., Dighavkar, C.G. et al. Semiconductor metal oxide compounds based gas sensors: A literature review. Front. Mater. Sci. 9, 14–37 (2015). https://doi.org/10.1007/s11706-015-0279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-015-0279-7

Keywords

Navigation