Skip to main content
Log in

The Developmental Origins of Mosaic Evolution in the Primate Limb Skeleton

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The central hypothesis of this paper is that basic properties of vertebrate limb development bias the generation of phenotypic variation in certain directions, and that these biases establish focal units, or regions, of evolutionary change within the primate hand and foot. These focal units include (1) a preaxial domain (digit I, hallux or pollex, metapodial and proximal phalanx), (2) a postaxial domain (metapodials and phalanges of digits II–V), and (3) a digit tip domain (terminal phalanges and nails/claws of rays I–V). The existence of these focal units therefore provides a mechanistic basis for mosaic evolution within the hand and foot, and can be applied to make specific predictions about which features of the limb skeleton are most likely to be altered in primate adaptive radiations over time. Examination of the early primate fossil record provides support for this model, and suggests that the existence of variational tendencies in limb development has played a major role in guiding the origin and evolution of primate skeletal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bastida, M., & Ros, M. (2008). How do we get a perfect complement of digits? Current Opinion in Genetics and Development, 18, 374–380.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, J., & Boyer, D. (2002). Grasping primate origins. Science, 298, 1606–1610.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, J., Silcox, M., Boyer, D., & Sargis, E. (2007). New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proceedings of the National Academy of Sciences USA, 104, 1159–1164.

    Article  CAS  Google Scholar 

  • Buffa, R., Marini, E., Cabras, S., Scalas, G., & Floris, G. (2007). Patterns of hand variation-new data on a Sardinian sample. Collegium Antropologicum, 31, 325–330.

    PubMed  Google Scholar 

  • Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Casanova, J. C., & Sanz-Ezquerro, J. J. (2007). Digit morphogenesis: Is the tip different? Development, Growth, Differentiation, 49, 479–491.

    Article  CAS  Google Scholar 

  • Chiu, C.-H., & Hamrick, M. W. (2002). Evolution and development of the primate limb skeleton. Evolutionary Anthropology, 11, 94–107.

    Article  Google Scholar 

  • Cohn, M., & Tickle, C. (1999). Developmental basis of limblessness and axial patterning in snakes. Nature, 399, 474–479.

    Article  PubMed  CAS  Google Scholar 

  • Cretekos, C., Wang, Y., Green, E., Martin, J., Rasweiler, J., & Behringer, R. (2008). Regulatory divergence modifies limb length between mammals. Genes and Development, 22, 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Dagosto, M. (1988). Implications of postcranial evidence for the origin of euprimates. Journal of Human Evolution, 17, 35–56.

    Article  Google Scholar 

  • Drossopoulou, G., Lewis, K., Sanz-Ezquerro, J., Nikbakht, N., McMahon, A., Hofman, C., et al. (2000). A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signaling and Bmp signaling. Development, 127, 1337–1348.

    PubMed  CAS  Google Scholar 

  • Franzen, J., Gingerich, P., Habersetzer, J., Hurum, H., von Koenigswald, W., & Smith, B. (2009). Complete primate skeleton from the middle Eocene of Messel in Germany: Morphology and paleobiology. PLoS One, 19, e5723.

    Article  Google Scholar 

  • Galis, F., van Alphen, J., & Metz, J. (2001). Why five fingers? Evolutionary constraints on digit numbers. Trends in Ecology & Evolution, 16, 637–646.

    Article  Google Scholar 

  • Gebo, D. (2004). A shrew-sized origin for primates. Yearbook of Physical Anthropology, 74, 40–62.

    Article  Google Scholar 

  • Godinot, M. (1992). Early euprimate hands in evolutionary perspective. Journal of Human Evolution, 22, 267–283.

    Article  Google Scholar 

  • Godinot, M., & Beard, K. C. (1991). Fossil primate hands: A review and an evolutionary inquiry emphasizing early forms. Human Evolution, 6, 307–354.

    Article  Google Scholar 

  • Greer, A. (1987). Limb reduction in the lizard genus Lerista. 1. Variation in the number of phalanges and presacral vertebrae. Journal of Herpetology, 21, 267–276.

    Article  Google Scholar 

  • Hamrick, M. W., & Alexander, J. (1996). The hand skeleton of Notharctus tenebrosus (Primates, Notharctidae) and its significance for the origin of the Primate hand. American Museum Novitates, 3182, 1–20.

    Google Scholar 

  • Hamrick, M. W. (1998). Functional and adaptive significance of primate pads and claws: Evidence from New World anthropoids. American Journal of Physical Anthropology, 106, 113–127.

    Article  PubMed  CAS  Google Scholar 

  • Hamrick, M. W. (2001). Development and evolution of the mammalian limb: Adaptive diversification of nails, hooves, and claws. Evolution & Development, 3, 355–363.

    Article  CAS  Google Scholar 

  • Hamrick, M. W. (2003). Evolution and development of mammalian limb integumentary structures. Journal of Experimental Zoology B (Molecular & Developmental Evolution), 298B, 152–163.

    Article  Google Scholar 

  • Hamrick, M. W. (2007). Evolvability, limb morphology, and primate origins. In M. Ravosa & M. Dagosto (Eds.), Primate origins: Adaptations and evolution. New York: Springer.

    Google Scholar 

  • Haygood, R., Fedrigo, O., Hanson, B., Yokoyama, K., & Wray, G. (2007). Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nature, 39, 1140–1144.

    CAS  Google Scholar 

  • Hendrikse, J., Parsons, T., & Hallgrimsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9, 393–401.

    Article  Google Scholar 

  • Hentschel, H., Glimm, T., Glazier, J., & Newman, S. A. (2004). Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proceedings of the Royal Society of London B, 271, 1713–1722.

    Article  CAS  Google Scholar 

  • Hinchliffe, J. R. (1989). Reconstructing the archetype: Innovation and conservatism in the evolution and development of the pentadactyl limb. In D. Wake & G. Roth (Eds.), Complex organismal functions: Integration and evolution in vertebrates. New York: Wiley.

    Google Scholar 

  • Hinchliffe, J. R. (1991). Developmental approaches to the problem of transformation of limb structure in evolution. In J. R. Hinchliffe, J. Hurle, & D. Summerbell (Eds.), Developmental patterning of the vertebrate limb. New York: Plenum Press.

    Google Scholar 

  • Hockman, D., Cretekos, C., Mason, M., Behringer, R., Jacobs, D., & Illing, N. (2008). A second wave of Sonic hedgehog expression during the development of the bat limb. Proceedings of National Academy of Sciences USA, 105, 16982–16987.

    Article  CAS  Google Scholar 

  • Hockman, D., Mason, M., Jacobs, D., & Illing, N. (2009). The role of early development in mammalian limb diversification: A descriptive comparison of early limb development between the Natal long-fingered bat (Miniopterus natalensis) and the mouse (Mus musculus). Developmental Dynamics, 238, 965–979.

    Article  PubMed  Google Scholar 

  • Hu, J., & He, L. (2008). Patterning mechanisms controlling digit development. Journal of Genetics and Genomics, 35, 517–524.

    Article  PubMed  Google Scholar 

  • Hunter, J., & Jernvall, J. (1995). The hypocone as a key innovation in mammalian evolution. Proceedings of National Academy of Sciences USA, 92, 10718–10722.

    Article  CAS  Google Scholar 

  • Jernvall, J. (2000). Linking development with evolutionary novelty in mammalian teeth. Proceedings of the National Academy of Sciences USA, 97, 2641–2645.

    Article  CAS  Google Scholar 

  • Jernvall, J., Keränen, S. V. E., & Thesleff, I. (2001). Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proceedings of the National Academy of Sciences USA, 97, 14444–14448.

    Article  Google Scholar 

  • Kavanagh, K., Evans, A., & Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–433.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, E., Lemelin, P., Hamrick, M., Boyer, D., & Bloch, J. (2008). Intrinsic hand proportions of euarchontans and other mammals: Implications for the locomotor behavior of plesiadapiforms. Journal of Human Evolution, 55, 278–299.

    Article  PubMed  Google Scholar 

  • Kirschner, M., & Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences USA, 95, 8420–8427.

    Article  CAS  Google Scholar 

  • Kraus, P., Fraidenraich, D., & Loomis, C. (2001). Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mechanisms of Development, 100, 45–58.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R. (1978). Evolutionary mechanisms of limb loss in tetrapods. Evolution, 32, 73–92.

    Article  Google Scholar 

  • Latimer, B., & Lovejoy, C. O. (1990). Hallucal tarsometatarsal joint in Australopithecus afarensis. American Journal of Physical Anthropology, 82, 123–133.

    Article  Google Scholar 

  • Lovejoy, C. O., McCollum, M. A., Reno, P. L., & Rosenman, B. A. (2003). Developmental biology and human evolution. Annual Reviews in Anthropology, 32, 85–109.

    Article  Google Scholar 

  • Meinhardt, H., & Gierer, A. (2000). Pattern formation by local self-activation and lateral inhibition. BioEssays, 22, 753–760.

    Article  PubMed  CAS  Google Scholar 

  • Montavon, T., Garrec, J., Kerzberg, M., & Duboule, D. (2008). Modelling HOX gene regulation in digits: Reverse collinearity and the molecular origin of thumbness. Genes and Development, 22, 236–259.

    Article  Google Scholar 

  • Mori, N., Tsugane, M., Yamashita, K., Ikuta, Y., & Yasuda, M. (2000). Pathogenesis of retinoic-acid induced abnormal pad patterns on mouse volar skin. Teratology, 62, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Müller, G. (1991). Evolutionary transformation of limb pattern: Heterochrony and secondary fusion. In J. R. Hinchliffe, J. Hurle, & D. Summerbell (Eds.), Developmental patterning of the vertebrate limb. New York: Plenum Press.

    Google Scholar 

  • Newman, S. A., & Müller, G. (2005). Origin and innovation in the vertebrate limb skeleton: An epigenetic perspective. Journal of Experimental Zoology B (Molecular Development & Evolution), 304B, 593–609.

    Article  Google Scholar 

  • Prabhakar, S., Visel, A., Akiyama, J., Shoukry, M., Lewis, K. D., Holt, A., et al. (2008). Human specific gain of function in a developmental enhancer. Science, 312, 1346–1350.

    Article  Google Scholar 

  • Reno, P., McCollum, M. A., Cohn, M. J., Meindl, R. S., Hamrick, M. W., & Lovejoy, C. O. (2008). Patterns of correlation and covariation of anthropoid distal forelimb segments correspond to Hoxd expression territories. Journal of Experimental Zoology B (Molecular & Developmental Evolution), 310B, 240–258.

    Article  Google Scholar 

  • Richardson, M. K. (1999). The developmental origins of adult variation. Bioessays, 21, 604–613.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, M., Gobes, S., van Leeuwen, A., Polman, J., Pieau, C., & Sanchez-Villagra, M. (2009). Heterochrony in limb evolution: Developmental mechanisms and natural selection. Journal of Experimental Zoology B (Molecular & Developmental Evolution), 312, 639–664.

    Article  Google Scholar 

  • Rolian, C., Lieberman, D., & Hallgrimsson, B. (2010). The co-evolution of human hands and feet. Evolution, 64, 1558–1568.

    Article  PubMed  Google Scholar 

  • Sargis, E., Boyer, D., Bloch, J., & Silcox, M. (2007). Evolution of pedal grasping in Primates. Journal of Human Evolution, 53, 103–107.

    Article  PubMed  Google Scholar 

  • Shapiro, M. D., Hanken, J., & Rosenthal, N. (2003). Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis. Journal of Experimental Zoology B (Molecular & Developmental Evolution), 297B, 48–56.

    Article  Google Scholar 

  • Shapiro, M., Shubin, N., & Downs, J. (2007). Limb diversity and digit reduction in reptilian evolution. In B. K. Hall (Ed.), Fins into limbs. Chicago: University of Chicago Press.

    Google Scholar 

  • Shubin, N., & Alberch, P. (1986). A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evolutionary Biology, 20, 319–387.

    Article  Google Scholar 

  • Springer, M., Murphy, W., Eizirik, E., & O’Brien, S. (2003). Placental mammal diversification and the Cretaceous-Tertiary boundary. Proceedings of the National Academy of Sciences USA, 100, 1056–1061.

    Article  CAS  Google Scholar 

  • Stern, D. L. (1998). The future of evolutionary biology. New Scientist, 159, 1–4.

    Google Scholar 

  • Stern, D. L. (2000). Evolutionary developmental biology and the problem of variation. Evolution, 54, 1079–1091.

    PubMed  CAS  Google Scholar 

  • Tague, R. (2002). Variability of metapodials in primates with rudimentary digits: Ateles geoffroyi, Colobus guereza, and Perodicticus potto. American Journal of Physical Anthropology, 117, 195–208.

    Article  PubMed  Google Scholar 

  • Thewissen, J., Cohn, M., Stevens, L., Bajpai, S., Heyning, J., & Horton, W. E., Jr. (2006). Developmental basis for hind-limb loss in dophins and origin of the cetacean bodyplan. Proceedings of the National Academy of Sciences USA, 103, 8414–8418.

    Article  CAS  Google Scholar 

  • Von Dassow, G., & Munro, E. (1999). Modularity in animal development and evolution: Elements of a conceptual framework for EvoDevo. Journal of Experimental Zoology B (Molecular & Developmental Evolution), 285, 307–325.

    Article  Google Scholar 

  • Wagner, G., & Vargas, A. O. (2008). On the nature of thumbs. Genome Biology, 9, 213.

    Article  PubMed  Google Scholar 

  • Woodman, N., & Morgan, J. P. (2005). Skeletal morphology of the forefoot in shrews (Mammalia: Soricidae) of the genus Cryptotis, as revealed by digital X-rays. Journal of Morphology, 266, 60–73.

    Article  PubMed  Google Scholar 

  • Zhu, J., Zhang, Y.-T., Alber, M., & Newman, S. (2010). Bare bones pattern formation: A core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS One, 5, e10892.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to Drs. Philipp Gunz and Philipp Mitteröcker for inviting me to participate in the Symposium on Human Evolution and Development held at the Konrad Lorenz Institute in Altenberg, Austria. Prof. Dr. Gerd Müller, Eva Karner, and Astrid Juette provided wonderful hospitality during the visit. Drs. Jukka Jernvall, Frietson Galis, and Benedikt Hallgrimmson provided helpful discussions on aspects of limb evolution and development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Hamrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamrick, M.W. The Developmental Origins of Mosaic Evolution in the Primate Limb Skeleton. Evol Biol 39, 447–455 (2012). https://doi.org/10.1007/s11692-011-9154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9154-3

Keywords

Navigation