Skip to main content
Log in

Remote sensing and geographic information systems techniques in studies on treeline ecotone dynamics

  • Review Article
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

We performed a meta-analysis on over 100 studies applying remote sensing (RS) and geographic information systems (GIS) to understand treeline dynamics. A literature search was performed in multiple online databases, including Web of Knowledge (Thomson Reuters), Scopus (Elsevier), BASE (Bielefeld Academic Search Engine), CAB Direct, and Google Scholar using treeline-related queries. We found that RS and GIS use has steadily increased in treeline studies since 2000. Spatial-resolution RS and satellite imaging techniques varied from low-resolution MODIS, moderate-resolution Landsat, to high-resolution WorldView and aerial orthophotos. Most papers published in the 1990s used low to moderate resolution sensors such as Landsat Multispectral Scanner and Thematic Mapper, or SPOT PAN (Panchromatic) and MX (Multispectral) RS images. Subsequently, we observed a rise in high-resolution satellite sensors such as ALOS, GeoEye, IKONOS, and WorldView for mapping current and potential treelines. Furthermore, we noticed a shift in emphasis of treeline studies over time: earlier reports focused on mapping treeline positions, whereas RS and GIS are now used to determine the factors that control treeline variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alatalo JM, Ferrarini A (2017) Braking effect of climate and topography on global change induced upslope forest expansion. Int J Biometeorl 61(3):541–548

    Article  Google Scholar 

  • Allen TR, Walsh SJ (1996) Spatial and compositional pattern of alpine treeline, Glacier National Park. Montana. Photogramm Eng Remote Sens 62(11):1261–1268

    Google Scholar 

  • Bader MY, Ruijten JJ (2008) A topography-based model of forest cover at the alpine tree line in the tropical Andes. J Biogeogr 35(4):711–723

    Article  Google Scholar 

  • Baker WL, Weisberg PJ (1995) Landscape analysis of the forest-tundra ecotone in Rocky Mountain National Park Colorado. Prof Geogr 47(4):361–375

    Article  Google Scholar 

  • Baker WL, Weisberg PJ (1997) Using gis to model tree population parameters in the rocky mountain national park forest–tundra ecotone. J Biogeogr 24(4):513–526

    Article  Google Scholar 

  • Baker WL, Honaker JJ, Weisberg PJ (1995) Using aerial photography and gis to map the forest-tundra ecotone in rocky mountain national park, colorado, for global change research. Photogramm Eng Remote Sens 61(3):313–320

    Google Scholar 

  • Bishop MP, Shroder JF, Colby JD (2003) Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology 55(1–4):345–361

    Article  Google Scholar 

  • Bobrowski M, Gerlitz L, Schickhoff U (2017) Modelling the potential distribution of Betula utilis in the Himalaya. Glob Ecol Conserv 11:69–83

    Article  Google Scholar 

  • Bonanomi G, Rita A, Allevato E, Cesarano G, Saulino L, Di Pasquale G, Allegrezza M, Pesaresi S, Borghetti M, Rossi S, Saracino A (2018) Anthropogenic and environmental factors affect the tree line position of Fagus sylvatica along the Apennines (Italy). J Biogeogr 00:1–14. https://doi.org/10.1111/jbi.13408

    Article  Google Scholar 

  • Braunisch V, Patthey P, Arlettaz R (2016) Where to combat shrub encroachment in alpine timberline ecosystems: combining remotely-sensed vegetation information with species habitat modelling. PLoS ONE 11:e0164318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DG (1994a) Predicting vegetation types at treeline using topography and biophysical disturbance variables. J Veg Sci 5(5):641–656

    Article  Google Scholar 

  • Brown DG (1994b) Comparison of vegetation-topography relationships at the alpine treeline ecotone. Phys Geogr 15(2):125–145

    Article  Google Scholar 

  • Bryant E, Ricketts T, Richard W (1991) Use of digital elevation data Landsat TM and vector map data to model treeline in the northeastern U.S. In: Proceedings of the eight thematic conference on geologic remote sensing II, pp 1111–1121

  • Butler DR, Malanson GP, Bekker MF, Lynn MR (2003) Lithologic, structural, and geomorphic controls on ribbon forest patterns in a glaciated mountain environment. Geomorphology 55(1–4):203–217

    Article  Google Scholar 

  • Cairns DM, Moen JON (2004) Herbivory influences tree lines. J Ecol 92(6):1019–1024

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Change 63(1–2):181–200

    Article  Google Scholar 

  • Case BS, Buckley HL (2015) Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines. PeerJ 3:e1334

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavez PS (1996) Image-based atmospheric corrections-revisited and improved. Photogramm Eng Remote Sens 62(9):1025–1035

    Google Scholar 

  • Chhetri PK (2018) Predicting upslope expansion of sub-alpine forest in the Makalu Barun National Park, eastern Nepal, with a hybrid cartographic model. J For Res 29(1):129–137

    Article  CAS  Google Scholar 

  • Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci 12(3):558–570

    Article  Google Scholar 

  • Chhetri PK, Cairns DM (2018) Low recruitment above treeline indicates treeline stability under changing climate in Dhorpatan Hunting Reserve. Western Nepal. Phys Geogr 39(4):329–342

    Article  Google Scholar 

  • Chhetri PK, Shrestha KB, Cairns DM (2017) Topography and human disturbances are major controlling factors in treeline pattern at Barun and Manang area in the Nepal Himalaya. J Mt Sci 14(1):119–127

    Article  Google Scholar 

  • Chhetri PK, Gaddis KD, Cairns DM (2018) Predicting the suitable habitat of treeline species in the Nepalese Himalayas under climate change. Mt Res Dev 38(2):153–163

    Article  Google Scholar 

  • Cullen LE, Palmer JG, Duncan RP, Stewart GH (2001) Climate change and tree-ring relationships of Nothofagus menziesii tree-line forests. Can J For Res 31(11):1981–1991

    Article  Google Scholar 

  • Danzeglocke J (2005) Remote sensing of upper timberline elevation in the Alps on different scales. New strategies for European remote sensing. In: Proceedings of the 24th symposium of the European association of remote sensing laboratories, 25–27 May 2004. Millpress Science Publishers, Dubrovnik, pp 145–151

  • De Wit HA, Bryn A, Hofgaard A, Karstensen J, Kvalevåg MM, Peters GP (2014) Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake. Glob Change Biol 20(7):2344–2355

    Article  Google Scholar 

  • Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A (2008) Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob Change Biol 14(7):1581–1591

    Article  Google Scholar 

  • Fagan WF, Fortin MJ, Soykan C (2003) Integrating edge detection and dynamic modeling in quantitative analyses of ecological boundaries. Bioscience 53(8):730–738

    Article  Google Scholar 

  • Fissore V, Motta R, Palik B, Mondino EB (2015) The role of spatial data and geomatic approaches in treeline mapping: a review of methods and limitations. Eur J Remote Sens 48(1):777–792

    Article  Google Scholar 

  • Gao YN, Zhang WC (2009) A simple empirical topographic correction method for ETM + imagery. Int J Remote Sens 30(9):2259–2275

    Article  Google Scholar 

  • Gartzia M, Alados CL, Pérez-Cabello F (2014) Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Prog Phys Geog 38(2):201–217

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90(4):537–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groen TA, Fanta HG, Hinkov G, Velichkov I, Duren IV, Zlatanov T (2012) Tree line change detection using historical hexagon mapping camera imagery and Google earth data. GISCI Remote Sens 49(6):933–943

    Article  Google Scholar 

  • Gu DG, Gillespie A (1998) Topographic normalization of landsat TM images of forest based on subpixel sun-canopy-sensor geometry. Remote Sens Environ 64(2):166–175

    Article  Google Scholar 

  • Guo D, Zhang HY, Hou GL, Zhao JJ, Liu DY, Guo XY (2014) Topographic controls on alpine treeline patterns on Changbai Mountain China. J Mt Sci 11(2):429–441

    Article  Google Scholar 

  • Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14(5):395–410

    Article  Google Scholar 

  • Jacob M, Frankl A, Hurni H, Lanckriet S, De Ridder M, Guyassa E, Beeckman H, Nyssen J (2017) Land cover dynamics in the Simien Mountains (Ethiopia), half a century after establishment of the National Park. Reg Environ Change 17(3):777–787

    Article  Google Scholar 

  • Kimball KD, Weihrauch DM (2000) Alpine vegetation communities and the alpine-treeline ecotone boundary in New England as biomonitors for climate change. In: Proceedings RMRS-P-15-VOL-3. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp 93–101

  • Klasner FL, Fagre DB (2002) A half century of change in alpine treeline patterns at Glacier National Park, Montana. USA. Arct Antarct Alp Res 34(1):49–56

    Article  Google Scholar 

  • Klinge M, Böhner J, Erasmi S (2014) Modelling forest lines and forest distribution patterns with remote sensing data in a mountainous region of semi-arid Central Asia. Biogeosci Discuss 11(10):14667–14698

    Article  Google Scholar 

  • Körner C (2012) Alpine treelines. Functional ecology of the global high elevation tree limits. Springer, Basel

    Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31(5):713–732

    Article  Google Scholar 

  • Kullman L (2007) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for tree line theory and climate change ecology. J Ecol 95(1):41–52

    Article  Google Scholar 

  • Leonelli G, Pelfini M, di Cella UM (2009) Detecting climatic treelines in the Italian Alps: the influence of geomorphological factors and human impacts. Phys Geogr 30(4):338–352

    Article  Google Scholar 

  • Leonelli G, Pelfini M, di Cella UM, Garavaglia V (2011) Climate warming and the recent treeline shift in the European Alps: the role of geomorphological factors in high-altitude sites. Ambio 40(3):264–273

    Article  PubMed  Google Scholar 

  • Leonelli G, Masseroli A, Pelfini M (2016) The influence of topographic variables on treeline trees under different environmental conditions. Phys Geogr 37(1):56–72

    Article  Google Scholar 

  • López-Serrano PM, Corral-Rivas JJ, Díaz-Varela RA, Alvarez-Gonzalez JG, Lopez-Sanchez CA (2016) Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using Landsat 5 TM data. Remote Sens 8(5):369

    Article  Google Scholar 

  • Luo GP, Dai L (2013) Detection of alpine tree line change with high spatial resolution sensed data. J App Remote Sens 7(1):073520

    Article  Google Scholar 

  • Macias-Fauria M, Johnson EA (2013) Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc Natl Acad Sci 110:8117–8122. https://doi.org/10.1073/pnas.1221278110

    Article  CAS  PubMed  Google Scholar 

  • Mathisen IE, Mikheeva A, Tutubalina OV, Aune S, Hofgaard A (2014) Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl Veg Sci 17(1):6–16

    Article  Google Scholar 

  • Mishra NB, Mainali KP (2017) Greening and browning of the Himalaya: spatial patterns and the role of climatic change and human drivers. Sci Total Environ 587:326–339

    Article  CAS  PubMed  Google Scholar 

  • Moen J, Aune K, Edenius L, Angerbjorn A (2004) Potential effects of climate change on treeline position in the Swedish mountains. Ecol Soc 9(1):16

    Article  Google Scholar 

  • Moran MS, Bryant R, Thome K, Ni W, Nouvellon Y, Gonzalez-Dugo MP, Qi J, Clarke TR (2001) A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sens Environ 78(1–2):71–82

    Article  Google Scholar 

  • Müller M, Schickhoff U, Scholten T, Drollinger S, Bohner J, Chaudhary R (2016) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal Nepal. Prog Phys Geog 40(1):135–160

    Article  Google Scholar 

  • Nagendra H (2001) Using remote sensing to assess biodiversity. Int J Remote Sens 22(12):2377–2400

    Article  Google Scholar 

  • Paulsen J, Körner C (2001) GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J Veg Sci 12:817–824

    Article  Google Scholar 

  • Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alpine Bot 124(1):1–12

    Article  Google Scholar 

  • Penuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30(6):829–837

    Article  Google Scholar 

  • Pettorelli N, Laurance WF, O’Brien TG, Wegmann M, Nagendra H, Turner W (2014) Satellite remote sensing for applied ecologists: opportunities and challenges. J Appl Ecol 51(4):839–848

    Article  Google Scholar 

  • Potter C (2016) Vegetation cover change in Glacier National Park detected using 25 years of Landsat satellite image analysis. J Biodivers Manage For 5(1):623–632. https://doi.org/10.4172/2327-4417.1000152

    Article  Google Scholar 

  • Resler LM (2006) Geomorphic controls of spatial pattern and process at alpine treeline. Prof Geogr 58(2):124–138

    Article  Google Scholar 

  • Resler LM, Fonstad MA, Butler DR (2004) Mapping the alpine treeline ecotone with digital aerial photography and textural analysis. Geocarto Int 19(1):37–44

    Article  Google Scholar 

  • Richardson AD, Friedland AJ (2009) A review of the theories to explain arctic and alpine treelines around the world. J Sustain For 28(1–2):218–242

    Article  Google Scholar 

  • Roughgarden J, Running S, Matson PA (1991) What does remote sensing do for ecology? Ecology 72(6):1918–1922

    Article  Google Scholar 

  • Simms ÉL, Ward H (2013) Multisensor NDVI-based monitoring of the tundra-taiga interface (Mealy Mountains, Labrador, Canada). Remote Sens 5(3):1066–1090

    Article  Google Scholar 

  • Steyaert LT, Goodchild MF (1994) Integrating geographic information systems and environmental simulation models: a status review. In: Michener WK, Brunt JW, Stafford SG (eds) Environmental information management and analysis: ecosystem to global scales. Taylor and Francis, Bristol, pp 333–356

    Google Scholar 

  • Stueve KM, Isaacs RE, Tyrrell LE, Densmore RV (2011) Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range. Ecology 92(2):496–506

    Article  PubMed  Google Scholar 

  • Tang LN, Shao GF (2015) Drone remote sensing for forestry research and practices. J For Res 26(4):791–797

    Article  Google Scholar 

  • Treml V, Šenfeldr M, Chuman T, Ponocná T, Demková K (2016) Twentieth century treeline ecotone advance in the Sudetes Mountains (Central Europe) was induced by agricultural land abandonment rather than climate change. J Veg Sci 27(6):1209–1221

    Article  Google Scholar 

  • Troll C (1973) The upper timberlines in different climatic zones. Arct Antarct Alp Res 5:A3–A18

    Google Scholar 

  • Tueller PT (1998) Approaches to mapping ecotone boundaries using emerging remote sensing technology. In: Proceedings RMRS: 78

  • Virtanen T, Mikkola K, Nikula A, Christensen JH, Mazhitova GG, Oberman NG, Kuhry P (2004) Modeling the location of the forest line in northeast European Russia with remotely sensed vegetation and GIS-based climate and terrain data. Arct Antarct Alp Res 36(3):314–322

    Article  Google Scholar 

  • Vittoz P, Rulence B, Largey T, Freléchoux F (2008) Effects of climate and land-use change on the establishment and growth of cembran pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arct Antarct Alp Res. 40(1):225–232

    Article  Google Scholar 

  • Wallentin G, Tappeiner U, Strobl J, Tasser E (2008) Understanding alpine tree line dynamics: an individual-based model. Ecol Modell 218(3–4):235–246

    Article  Google Scholar 

  • Walsh SJ, Kelly NM (1990) Treeline migration and terrain variability: integration of remote sensing digital enhancements and digital elevation models. In: Proceedings of applied geography conferences, pp 24–32

  • Walsh SJ, Malanson GP, Butler DR (1992) Alpine treeline in glacier national park montana. In: Janelle DG (ed) Geographical snapshots of North America. The Guilford Press, New York, pp 161–171

    Google Scholar 

  • Walsh SJ, Butler DR, Allen TR, Malanson GP (1994) Influence of snow patterns and snow avalanches on the alpine treeline ecotone. J Veg Sci 5(5):657–672

    Article  Google Scholar 

  • Walsh SJ, Butler DR, Malanson GP (1998) An overview of scale, pattern, process relationships in geomorphology: a remote sensing and GIS perspective. Geomorphology 21(3–4):183–205

    Article  Google Scholar 

  • Walsh SJ, Butler DR, Malanson GP, Crews-Meyer KA, Messina JP, Xiao N (2003) Mapping, modeling, and visualization of the influences of geomorphic processes on the alpine treeline ecotone, Glacier National Park, MT USA. Geomorphology 53(1–2):129–145

    Article  Google Scholar 

  • Wang T, Zhang QB, Ma K (2006) Treeline dynamics in relation to climatic variability in the central Tianshan mountains, northwestern China. Glob Ecol Biogeogr 15(4):406–415

    Article  Google Scholar 

  • Wang Y, Pederson N, Ellison AM, Buckley HL, Case BS, Liang E, Julio Camarero J (2016) Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology 97(7):1668–1679

    Article  PubMed  Google Scholar 

  • Weiss DJ, Walsh SJ (2009) Remote sensing of mountain environments. Geography Compass 3(1):1–21

    Article  Google Scholar 

  • White JD, Kroh GC, Pinder JE (1995) Forest mapping at Lassen Volcanic National Park, California, using Landsat TM data and a geographical information system. Photogramm Eng Remote Sens 61:299–305

    Google Scholar 

  • Xie YC, Sha ZY, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1(1):9–23

    Article  Google Scholar 

  • Yao YH, Zhang BP (2015) The mass elevation effect of the Tibetan Plateau and its implications for Alpine treelines. Int J Climatol 35(8):1833–1846

    Article  Google Scholar 

  • Zhang YJ, Dai LM, Pan J (2001) The trend of tree line on the northern slope of Changbai mountain. J For Res 12(2):97–100

    Article  Google Scholar 

  • Zhang YJ, Xu M, Adams JM, Wang XC (2009) Can Landsat imagery detect tree line dynamics? Int J Remote Sens 30(5):1327–1340

    Article  Google Scholar 

  • Zhao F, Zhang BP, Pang Y, Yao YH (2014) A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere. J Geog Sci 24(2):226–236

    Article  Google Scholar 

  • Zhao F, Zhang BP, Zhang S, Qi WW, He WH, Wang J, Yao YH (2015) Contribution of mass elevation effect to the altitudinal distribution of global treelines. J Mt Sci 12(2):289–297

    Article  Google Scholar 

  • Zomer R, Ustin S, Ives J (2002) Using satellite remote sensing for DEM extraction in complex mountainous terrain: landscape analysis of the Makalu Barun National Park of eastern Nepal. Int J Remote Sens 23(1):125–143

    Article  Google Scholar 

  • Zong SW, Wu ZF, Xu JW, Li M, Gao XF, He HS, Du HB, Wang L (2014) Current and potential tree locations in tree line ecotone of Changbai mountains, Northeast China: the controlling effects of topography. PLoS ONE 9:e106114

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen K. Chhetri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by 2014-2019 Title V-PPOHA-# P031M140041 and 2018/19 AY Faculty RSCA grant at CSU Dominguez Hills for summer funding.

The online version is available at http://www.springerlink.com.

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetri, P.K., Thai, E. Remote sensing and geographic information systems techniques in studies on treeline ecotone dynamics. J. For. Res. 30, 1543–1553 (2019). https://doi.org/10.1007/s11676-019-00897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-00897-x

Keywords

Navigation