Skip to main content
Log in

A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

Alpine timberline, as the “ecological transition zone,” has long attracted the attention of scientists in many fields, especially in recent years. Many unitary and dibasic fitting models have been developed to explore the relationship between timberline elevation and latitude or temperature. However, these models are usually on regional scale and could not be applied to other regions; on the other hand, hemispherical-scale and continental-scale models are usually based on about 100 timberline data and are necessarily low in precision. The present article collects 516 data sites of timberline, and takes latitude, continentality and mass elevation effect (MEE) as independent variables and timberline elevation as dependent variable to develop a ternary linear regression model. Continentality is calculated using the meteorological data released by WorldClim and mountain base elevation (as a proxy of mass elevation effect) is extracted on the basis of SRTM 90-meter resolution elevation data. The results show that the coefficient of determination (R2) of the linear model is as high as 0.904, and that the contribution rate of latitude, continentality and MEE to timberline elevation is 45.02% (p=0.000), 6.04% (p=0.000) and 48.94% (p=0.000), respectively. This means that MEE is simply the primary factor contributing to the elevation distribution of timberline on the continental and hemispherical scales. The contribution rate of MEE to timberline altitude differs in different regions, e.g., 50.49% (p=0.000) in North America, 48.73% (p=0.000) in the eastern Eurasia, and 43.6% (p=0.000) in the western Eurasia, but it is usually very high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arno S F, Hammerly R P, 1984. Timberline: Mountain and Arctic Forest Frontiers. Seattle: The Mountaineers.

    Google Scholar 

  • Atalay I, 2006. The effects of mountainous areas on biodiversity: A case study from the northern Anatolian mountains and the Taurus mountains. Grazer Schriften der Geographie und Raumforschung, 41: 17–26.

    Google Scholar 

  • Bader M Y, van Geloof I, Rietkerk M, 2008. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol., 191: 33–45.

    Article  Google Scholar 

  • Barbour M G, Billings W D, 2000. North American Terrestrial Vegetation. Cambridge, U.K.: New York, NY: Cambridge University Press.

    Google Scholar 

  • Brazel A J, Marcus M G, 1991. July temperatures in Kashmir and Ladakh, India: Comparisons of observations and general-circulation model simulations. Mountain Research and Development, 11(2): 75–86.

    Article  Google Scholar 

  • Chen L X, Reiter E R, Feng Z Q, 1985. The atmospheric heat-source over the Tibetan Plateau-May-August 1979. Monthly Weather Review, 113(10): 1771–1790.

    Article  Google Scholar 

  • Cogbill C V, White P S, 1991. The latitude-elevation relationship for spruce-fir forest line along the Appalachian mountain chain. Vegetation, 94: 153–175.

    Article  Google Scholar 

  • Cogbill C V, White P S, Wiser K S, 1997. Predicting treeline elevation in the Southern Appalachians. Castanea, 62(3): 137–146.

    Google Scholar 

  • Daubenmire R, 1954. Alpine timberlines in the Americas and their interpretation. Butler University Botanical Studies, 11: 119–135.

    Google Scholar 

  • Ding L, 1990. Chinese Gazetteer. Shanghai: Shanghai Lexicographical Publishing House. (in Chinese)

    Google Scholar 

  • Dullinger S, Dirnbock T, Grabherr G, 2004. Modelling climate change-driven treeline shifts: Relative effects of temperature increase, dispersal and invasibility. Journal of Ecology, 92: 241–252.

    Article  Google Scholar 

  • Ellenberg H, 1966. Leben und kampf an den baumgrenzen der erde. Naturwiss. Rundschau, Stuttgart, 19: 133–139.

    Google Scholar 

  • Fang J Y, 1992. Study on the geographic elements affecting temperature distribution in China. Acta Ecologica Sinica, 12(2): 97–104. (in Chinese)

    Google Scholar 

  • Fang J Y, 1995. Three-dimension distribution of forest zones in East Asia. Acta Geographica Sinica, 50(2): 160–167. (in Chinese)

    Google Scholar 

  • Flenley J, 2007. Ultraviolet insolation and the tropical rainforest: Altitudinal variations, Quaternary and recent change, extinctions, and biodiversity. In: Bush M B, Flenley J R. Tropical Rainforest Responses to Climatic Change. Chichester, UK.: Praxis, 219–235.

    Chapter  Google Scholar 

  • Gersmehl P, 1973. Pseudo-timberline: The Southern Appalachian grassy balds. Arctic and Alpine Research, 5(3): A137–A138.

    Google Scholar 

  • Gorczyński L, 1920. Sur le calcul du degré du continentalisme et son application dans la climatologie. Geografiska Annaler, 2: 324–331.

    Article  Google Scholar 

  • Grace J, Allen N J, Wilson C, 1989. Climate and the meristem temperatures of plant communities near the tree-line. Oecologia, 79: 198–204.

    Article  Google Scholar 

  • Griggs R F, 1938. Timberlines in the northern Rocky Mountains. Ecology, 19(4): 548–564.

    Article  Google Scholar 

  • Grubb J P, 1971. Interpretation of massenerhebung effect on tropical mountains. Nature, 1971(229): 44–45.

    Article  Google Scholar 

  • Hall J B, 1984. Juniperus excelsa in Africa: A biogeographical study of an afromontane tree. Journal of Biogeography, 11(1): 47–61.

    Article  Google Scholar 

  • Han F, Yao Y H, Dai S B et al., 2012. Mass elevation effect and its forcing on timberline altitude. J. Geogr. Sci., 22(4): 609–616.

    Article  Google Scholar 

  • Han F, Zhang B P, Yao Y H et al., 2011. Mass elevation effect and its contribution to the altitude of snowline in the Tibetan Plateau and surrounding areas. Arctic, Antarctic, and Alpine Research, 43(2): 207–212.

    Article  Google Scholar 

  • Hastenrath S, 1968. Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of C. America and Sourthern Mexico. In: Troll C. Geo-ecology of the Mountainous Regions of the Tropical Americas. Bonn: Dümmler in Kommission, 122–130.

    Google Scholar 

  • Hermes K, 1955. Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstrand zur Schneegrenze. Köln: Selbstverlag des Geographischen Instituts der Universität Köln.

    Google Scholar 

  • Hijmans R J, Cameron S E, Parra J L et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965–1978.

    Article  Google Scholar 

  • Holtmeier F K, Broll G, 2005. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14(5): 395–410.

    Article  Google Scholar 

  • Jobbagy E G, Jackson R B, 2000. Global controls of forest line elevation in the northern and southern hemispheres. Global Ecology and Biogeography, 9(3): 253–268.

    Article  Google Scholar 

  • Körner C, 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115(4): 445–459.

    Article  Google Scholar 

  • Körner C, Paulsen J, 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31(5): 713–732.

    Article  Google Scholar 

  • Kutzbach J E, Prell W L, Ruddiman W F, 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. The Journal of Geology, 101(2): 177–190.

    Article  Google Scholar 

  • Leuschner C, 1996. Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: Elevation, structure and floristics. Vegetation, 123(2): 193–206.

    Article  Google Scholar 

  • Malanson G P, Resler L M, Bader M Y, 2011. Mountain treelines: A roadmap for research orientation. Arctic, Antarctic, and Alpine Research, 43(2): 167–177.

    Article  Google Scholar 

  • Malyshev L, 1993. Levels of the upper forest boundary in Northern Asia. Vegetation, 109(2): 175–186.

    Article  Google Scholar 

  • McCain C M, 2005. Elevational gradients in diversity of small mammals. Ecology, 86(2): 366–372.

    Article  Google Scholar 

  • Messerli B, Winiger M, 1992. Climate, environmental change, and resources of the African mountains from the Mediterranean to the Equator. Mountain Research and Development, 12(4): 315–336.

    Article  Google Scholar 

  • Miehe G, Miehe S, Vogel J et al., 2007. Highest treeline in the northern hemisphere found in southern Tibet. Mountain Research and Development, 27(2): 169–173.

    Article  Google Scholar 

  • Ohsawa M, 1990. An interpretation of latitudinal patterns of forest limits in South and East Asian Mountains. Journal of Ecology, 78(2): 326–339.

    Article  Google Scholar 

  • Peng B Z, 1986. Some problems of vertical zonation in Mt.Namjagbarwa area. Acta Geographica Sinica, 41(1): 51–58. (in Chinese)

    Google Scholar 

  • Rao G V, Erdogan S, 1989. The atmospheric heat source over the Bolivian plateau for a mean January. Boundary-layer Meteorology, 46(1): 13–33.

    Article  Google Scholar 

  • Schickhoff U, 2005. The upper timberline in the Himalayas, Hindu Kush and Karakorum: A review of geographical and ecological aspects. In: Mountain Ecosystems, 275–354.

    Chapter  Google Scholar 

  • Schroeter C, 1908. Das pflanzenleben der Alpen: eine schilderung der hochgebrigsflora. Verlag von Albert Raustein, Zurich, Switzerland: Verlag von Albert Raustein.

    Google Scholar 

  • Shreve F, 1922. Conditions indirectly affecting vertical distribution on desert mountains. Ecology, 3(4): 269–274.

    Article  Google Scholar 

  • Sjogren E, 1974. Local climatic conditions and zonation of vegetation on Madeira. Agronomia Lusitana, 36: 95–139.

    Google Scholar 

  • Stanyukovich K V, 1973. Vegetation of the mountains of the USSR. Dushanbe: Donim Publishing House. (in Russian)

    Google Scholar 

  • Stewart G R, 1970. American Place-names: A Concise and Selective Dictionary for the Continental United States of America. New York: Oxford University Press.

    Google Scholar 

  • Szeicz J M, Macdonald G M, 1995. Recent white spruce dynamics at the Subarctic alpine treeline of north-western Canada. Journal of Ecology, 83(5): 873–885.

    Article  Google Scholar 

  • Tollner, 1949. Der Einfluß großer Massenerhebungen auf die Lufttemperatur und die Ursachen der Hebung der Vegetationsgrenzen in den inneren Ostalpen. Theoretical and Applied Climatology, 1: 347–372.

    Google Scholar 

  • Whitmore T C, 1984. A vegetation map of Malesia at the scale of 1:5 million. J. Biogeogr., 11: 461–471.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiping Zhang.

Additional information

Foundation: National Natural Science Foundation of China, No.41030528; No.40971064

Author: Zhao Fang (1984–), PhD, specialized in GIS/RS application and mountain environment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, F., Zhang, B., Pang, Y. et al. A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere. J. Geogr. Sci. 24, 226–236 (2014). https://doi.org/10.1007/s11442-014-1084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-014-1084-4

Keywords

Navigation