Skip to main content
Log in

Microstructures and Properties of W-Ti Alloys Prepared Under Different Cooling Conditions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

W-(10 to 15) wt.% Ti alloys were sintered at 1400 or 1500 °C and cooled under different cooling conditions. The microstructures and properties of W-Ti alloys were affected by the cooling conditions. XRD, SEM, EBSD, and TEM were carried out to investigate the effects of cooling conditions and sintering temperature on the microstructures of W-Ti alloys. The nanohardness and elastic modulus of the alloys were also investigated. The results showed that when the temperature was 1500 °C, the content of Ti-rich phase in W-(10 to 15) wt.% Ti alloys decreased obviously with the increase of cooling rate (the average cooling rate of furnace cooling, air cooling and water cooling was 0.2, 10, and 280 °C/s, respectively). For the W-10 wt.% Ti alloy, the content decreased from 20.5 to 9.7%, and the grain size decreased from 2.33 to 0.67 μm. When the temperature decreased to 1400 °C, the grain size was also decreased sharply with the increase of cooling rate, but there was a little change in the microstructure. Meanwhile, the grain sizes were smaller than those of the alloys sintered at 1500 °C. The nanohardness and elastic modulus increased with the increase of cooling rate, and the alloys sintered at different temperatures had different nanohardness and elastic modulus which depended on the cooling conditions. Sintering at a proper temperature and then cooling at a certain cooling condition was a useful method to fabricate alloy with less Ti-rich phase and high properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Petrović, D. Peruško, B. Gakoviš, M. Mitrić, J. Kovać, A. Zalar, V. Milinović, I. Bogdanovic-Radović, and M. Milosavljević,Effects of Thermal Annealing on Structural and Electrical Properties of Sputtered W-Ti Thin Films, Surf. Coat. Technol., 2010, 204(12–13), p 2099–2102

    Article  Google Scholar 

  2. D. Udler, D. Marpx, and G. Murphy, Tungsten-Titanium Sputtering Target Technology, MRC Technical Note, 1990

  3. Q.X. Wang, Z.K. Fan, and S.H. Liang, Thermal Stability of Nanocrystalline W-Ti Diffusion Barrier Thin Films, Sci. China Technol. Sci., 2010, 53(4), p 1049–1055

    Article  Google Scholar 

  4. Z.H. Wang, M.Y. Chu, X.M. Wang, F. Guo, and X. Zhao, Tungsten-Titanium Targets and Manufacturing Technology, Chin. J. Rare Met., 2006, 30(1), p 95–99 (in Chinese)

    Google Scholar 

  5. R. Daniel, C. John, and J.H. Shi, Tungsten Titanium Targets for VLSI Device Fabrication, MRC Technical Note, 1994

  6. C.E. Wickersham, J.E. Poole, and J.J. Mueller,Particle Contamination During Sputter Deposition of W-Ti Films, J. Vac. Sci. Technol. A, 1992, 10(4), p 1713–1717

    Article  Google Scholar 

  7. C.F. Lo and P. Gilman, Particle Generation in W-Ti Deposition, J. Vac. Sci. Technol. A, 1999, 17(2), p 608–610

    Article  Google Scholar 

  8. Z.H. Wang, X.M. Wang, M.Y. Chu, F. Guo, X. Zhao, and J.Y. Chen, Preparation of W-Ti Sputtering Targets Under Inert Atmosphere, Chin. J. Rare Met., 2006, 30(5), p 688–691 (in Chinese)

    Google Scholar 

  9. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., American Society for Metals, Metals Park, Ohio, 1990, p 288

    Google Scholar 

  10. C.F. Lo, Single Phase Tungsten-Titanium Sputtering Targets and Method of Producing Same, United States Patent: 630155, 1996.

  11. C.E. Wickersham, Method of Producing Tungsten-Titanium Sputter Targets and Targets Produced Thereby, United States Patent: 685789, 1993.

  12. A. Hiraki. Tiatnium-Tungsten Target Material and Manufacturing Method Thereof, United States Patent: 5298338, 1994.

  13. Q.X. Wang, Investigation on Preparation and Application of W-10Ti Alloy Target, Ph.D. thesis, Xi’an University of technology, 2010 (in Chinese).

  14. G.M. Song, Y. Zhou, and Y.J. Wang, The Microstructure and Elevated Temperature Strength of Tungsten-Titanium Carbide Composite, J. Mater. Sci., 2002, 37, p 3541–3548

    Article  Google Scholar 

  15. S.A. Souza, R.B. Manicardi, P.L. Ferrandini, C.R.M. Afonso, A.J. Ramirez, and R. Caram, Effect of the Addition of Ta on Microstructure and Properties of Ti-Nb Alloys, J. Alloys Compd., 2010, 504(2), p 330–340

    Article  Google Scholar 

  16. S.M. Sadrossadat, S. Johansson, and R.L. Peng, EBSD Investigation of the Effect of the Solidification Rate on the Nucleation Behavior of Eutectic Components in a Hypoeutectic Al-Si-Cu Alloy, Met. Mater. Int., 2012, 18(3), p 405–411

    Article  Google Scholar 

  17. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, and Z.G. Liu, Room-Temperature Saturated Ferroelectric Polarization in BiFeO3 Ceramics Synthesized by Rapid Liquid Phase Sintering, Appl. Phys. Lett., 2004, 84(10), p 1731–1733

    Article  Google Scholar 

  18. S.N. Saud, E. Hamzah, T. Abubakar, S. Farahany, and H.R. Bakhsheshi-Rad, Effect of Quenching Media on Phase Transformation Characteristics and Hardness of Cu-Al-Ni-Co Shape Memory Alloys, J. Mater. Eng. Perform., 2015, 24(4), p 1522–1530

    Article  Google Scholar 

  19. W.L. Dai, S.H. Liang, Y.T. Luo, and Q. Yang, Effect of W Powders Characteristics on the Ti-Rich Phase and Properties of W-10 wt.% Ti Alloy, Int. J. Refract. Met. Hard Mater., 2015, 50, p 240–246

    Article  Google Scholar 

  20. M. Ahmed, D.G. Savvakin, O.M. Ivasishin, and E.V. Pereloma, The Effect of Cooling Rates on the Microstructure and Mechanical Properties of Thermo-Mechanically Processed Ti-Al-Mo-V-Cr-Fe Alloys, Mater. Sci. Eng. A, 2013, 576, p 167–177

    Article  Google Scholar 

  21. F.A. Javid, N. Mattern, M. Samadi Khoshkhoo, M. Stoica, S. Pauly, and J. Eckert, Phase Formation of Cu50-xCoxZr50 (x = 0-20 at.%) Alloys: Influence of Cooling Rate, J. Alloys Compd., 2014, 590, p 428–434

    Article  Google Scholar 

  22. X.J. Tian, S.Q. Zhang, and H.M. Wang,The Influences of Anneal Temperature and Cooling Rate on Microstructure and Tensile Properties of Laser Deposited Ti-4Al-1.5Mn Titanium Alloy, J. Alloys Compd., 2014, 608, p 95–101

    Article  Google Scholar 

  23. G.W. Lee, A.K. Gangopadhyay, and K.F. Kelton, Phase Diagram Studies of Ti-Zr-Ni Alloys Containing Less Than 40 at.% Ni and Estimated Critical Cooling Rate for Icosahedral Quasicrystal Formation from the Liquid, Acta Mater., 2011, 59(12), p 4964–4973

    Article  Google Scholar 

  24. T. Chookajorn and C.A. Schuh, Nanoscale Segregation Behavior and High-Temperature Stability of Nanocrystalline W-20 at.% Ti, Acta Mater., 2014, 73, p 128–138

    Article  Google Scholar 

  25. A.I. Antipov and V.N. Moiseev, Coefficient of β-Stabiization of Titanium Alloys, Met. Sci. Heat Treat., 1997, 39(12), p 499–503

    Article  Google Scholar 

  26. L. Song, X.J. Xu, J. Sun, and J.P. Lin, Cooling Rate Effects on the Microstructure Evolution in the βo Zones of Cast Ti-45Al-8.5Nb-(W, B, Y) Alloy, Mater. Charact., 2014, 93, p 62–67

    Article  Google Scholar 

  27. M.J. Aziz, Model for Solute Redistribution During Rapid Solidification, J. Appl. Phys., 1982, 53(2), p 1158–1168

    Article  Google Scholar 

  28. K. Zhuravleva, M. Bönisch, S. Scudino, M. Calin, L. Schultz, and J. Eckert, Phase Transformations in Ball-Milled Ti-40Nb and Ti-45Nb Powders Upon Quenching from the β-Phase Region, Powder Technol., 2014, 253, p 166–171

    Article  Google Scholar 

  29. A. Carman, L.C. Zhang, O.M. Ivasishin, D.G. Savva, M.V. Matviychuk, and E.V. Pereloma, Role of Alloying Elements in Microstructure Evolution and Alloying Elements Behavior During Sintering of a Near-β Titanium Alloy, Mater. Sci. Eng. A, 2011, 528(3), p 1686–1693

    Article  Google Scholar 

  30. C. Yang, D. Hu, A. Huang, and M. Dixon, Solidification and Grain Refinement in Ti45Al2Mn2Nb1B Subjected to Fast Cooling, Intermetallics, 2013, 32, p 64–71

    Article  Google Scholar 

  31. C.X. Mei, Y. Liu, and X.A. Zhang, Study on Non-equilibrium Effect of Rapid Solidification, Mater. Rev., 2009, 23(6), p 90–93 (in Chinese)

    Google Scholar 

  32. N.Q. Wang and B.Y. Wei, Phase Separation and Structural Evolution of Undercooled Fe-Sn Monotectic Alloy, Mater. Sci. Eng. A, 2003, 345(1–2), p 145–154

    Article  Google Scholar 

  33. L. Kurmanaeva, T.D. Topping, H.M. Wen, H. Sugahara, H. Yang, D.L. Zhang, J.M. Schoenung, and E.J. Lavernia, Strengthening Mechanisms and Deformation Behavior of Cryomilled Al-Cu-Mg-Ag Alloy, J. Alloys Compd., 2015, 632, p 591–603

    Article  Google Scholar 

  34. B. Madhusmita, R. Mythili, S. Raju, and S. Saroja, Effect of Cooling Rate on Mechanism of β → α Phase Transformation on Continuous Cooling in Ti-5Ta-1.8Nb Alloy, J. Alloys Compd., 2013, 553, p 59–68

    Article  Google Scholar 

  35. J. Lu, Y.J. Choi, Z.Z. Fang, H.Y. Sohn, and E. Rönnebro, Hydrogen Storage Properties of Nanosized MgH2-0.1TiH2 Prepared by Ultrahigh-Energy-High-Pressure Milling, J. Am. Chem. Soc., 2009, 131(43), p 15843–15852

    Article  Google Scholar 

  36. C. Jiménez, F. Garcla-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart, Decomposition of TiH2 Studied In Situ by Synchrotron x-ray and Neutron Diffraction, Acta Mater., 2011, 59(16), p 6318–6330

    Article  Google Scholar 

  37. O.G. Ershova, V.D. Dobrovolsky, Y.M. Solonif, and O.Y. Khyzhun, Hydrogen-Sorption and Thermodynamic Characteristics of Mechanically Grinded TiH1.9 as Studied Using Thermal Desorption Spectroscopy, J. Alloys Compd., 2011, 509(1), p 128–133

    Article  Google Scholar 

  38. R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia, Deformation and Activation Volumes of Cryomilled Ultrafine-Grained Aluminum, Acta Mater., 2004, 52(14), p 4259–4271

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 51174161 and 51371139), the Pivot Innovation Team of Shaanxi Electric Materials and Infiltration Technique (No. 2012KCT-25), Shaanxi provincial project of special foundation of key disciplines, Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JM5179), Scientific Research Program Funded by Shaanxi Provincial Education Department of China (No. 15JS072), and 863 Program (No. 2015AA034304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Liang, S., Yang, Q. et al. Microstructures and Properties of W-Ti Alloys Prepared Under Different Cooling Conditions. J. of Materi Eng and Perform 25, 2626–2634 (2016). https://doi.org/10.1007/s11665-016-2146-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2146-9

Keywords

Navigation