Skip to main content
Log in

Properties of phosphorus-doped (Zn,Mg)O thin films and device structures

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The properties of phosphorus-doped (Zn,Mg)O polycrystalline and epitaxial thin films are described. The as-deposited (Zn,Mg)O:P films are n type with high electron carrier density. High resistivity is induced in the films with moderate temperature annealing, which is consistent with suppression of the donor state and activation of the deep acceptor. The resistivity of the as-deposited and annealed film is an order of magnitude higher than similar samples with no Mg, consistent with a shift in the conduction band edge relative to the defect-related donor state. The capacitance-voltage characteristics of annealed metal/insulator/P-doped (Zn,Mg)O structures in which the (Zn,Mg)O is polycrystalline exhibit p-type polarity. In addition, multiple polycrystalline devices comprising n-type ZnO/P-doped (Zn,Mg)O thin-film junctions display asymmetric I–V characteristics that are consistent with the formation of a p-n junction at the interface, although the ideality factor is anomalously high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Hutson, Phys. Rev. 108, 222 (1957).

    Article  CAS  Google Scholar 

  2. D.C. Look, J.W. Hemsky, and J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).

    Article  CAS  Google Scholar 

  3. B.J. Jin, S.H. Bae, S.Y. Lee, and S. Im, Mater. Sci. Eng. B71, 301 (2000).

    Article  CAS  Google Scholar 

  4. D.M. Hofmann, A. Hofstaetter, F. Leiter, Huijuan Zhou, F. Henecker, B.K. Meyer, S.B. Orlinskii, J. Schmidt, and P.G. Baranov, Phys. Rev. Lett. 88, 045504/1–4 (2002).

    Google Scholar 

  5. C.G. Van de Walle, Phys. Status Solidi B 229, 221 (2002).

    Article  Google Scholar 

  6. S.F.J. Cox, E.A. Davis, P.J.C. King, J.M. Gil, H.V. Alberto, R.C. Vilao, J. Piroto Duarte, N.A. De Campos, and R.L. Lichti, J. Phys.: Condensed Matter 13, 9001 (2001).

    Article  CAS  Google Scholar 

  7. C.G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).

    Article  Google Scholar 

  8. G.F. Newmark, Materials Science and Engr. R21, 1 (1997).

    Article  Google Scholar 

  9. D.B. Laks, C.G. Van de Walle, G.F. Neumark, and S.T. Pantelides, Appl. Phys. Lett. 63, 1375 (1993).

    Article  CAS  Google Scholar 

  10. Y. Kanai, Jpn. J. Appl. Phys., Part 1 (Regular Papers & Short Notes) 30, 703 (1991).

    Article  CAS  Google Scholar 

  11. Y. Kanai, Jpn. J. Appl. Phys., Part 1 (Regular Papers & Short Notes) 30, 2021 (1991).

    Article  CAS  Google Scholar 

  12. J.A. Savage and E.M. Dodson, J. Mater. Sci. 4, 809 (1969).

    Article  CAS  Google Scholar 

  13. A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, J. Vac. Sci Technol. A 9, 286 (1991).

    Article  CAS  Google Scholar 

  14. A. Onedera, N. Tamaki, K. Jin, and H. Yamashita, Jpn. J. Appl. Phys. 36, 6008 (1997).

    Article  Google Scholar 

  15. G. Weise, E.M. Fechner, G. Owsian, and D. Kraut, Thin Solid Films 32, 87 (1976).

    Article  CAS  Google Scholar 

  16. P.H. Kasai, Phys. Rev. 130, 989 (1963).

    Article  CAS  Google Scholar 

  17. H. Wolk, S. Deubler, D. Forkel, H. Foettinger, M. Iwatschenko-Borho, F. Meyer, M. Renn, W. Witthuhn, and R. Helbig, Mater. Sci. Forum Part 3 10–12, 863 (1986).

    Google Scholar 

  18. T. Nagata, T. Shimura, Y. Nakano, A. Ashida, N. Fujimura, and T. Ito, Jpn. J. Appl. Phys. Part 1 40, 5615 (2001).

    Article  CAS  Google Scholar 

  19. T. Yamamoto and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 38, L166 (1999).

    Google Scholar 

  20. C.H. Park, S.B. Zhang, and Wei Su-Huai, Phys. Rev. B 66, 073202/1–3 (2002).

  21. N.Y. Garces, N.C. Giles, L.E. Halliburton, G. Cantwell, D.B. Eason, D.C. Reynolds, and D.C. Look, Appl. Phys. Lett. 80, 1334 (2002).

    Article  CAS  Google Scholar 

  22. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys. 36, L1453 (1997).

    Google Scholar 

  23. Xin-Li Guo, H. Tabata, and T. Kawai, J. Cryst. Growth 223, 135 (2001).

    Article  CAS  Google Scholar 

  24. K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, J. Cryst. Growth 209, 526 (2000).

    Article  CAS  Google Scholar 

  25. Y. Yan, S.B. Zhang, and S.T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001).

    Article  CAS  Google Scholar 

  26. Jinzhong Wang, Guotong Du, Baijun Zhao, Xiaotian Yang, Yuantao Zhang, Yan Ma, Dali Liu, Yuchun Chang, Haisong Wang, Hongjun Yang, and Shuren Yang, J. Cryst. Growth 255, 293 (2003).

    Article  CAS  Google Scholar 

  27. J.F. Rommeluere, L. Svob, F. Jomard, J. Mimila-Arroyo, A. Lusson, V. Sallet, and Y. Marfaing, Appl. Phys. Lett. 83, 287 (2003).

    Article  CAS  Google Scholar 

  28. X. Li, Y. Yan, T.A. Gessert, C.L. Perkins, D. Young, C. DeHart, M. Young, and T.J. Coutts, J. Vacuum Sci. Technol. A (Vacuum, Surfaces, and Films) 21, 1342 (2003).

    Article  CAS  Google Scholar 

  29. T. Ohshima, T. Ikegami, K. Ebihara, J. Asmussen, and R.K. Thareja, Thin Solid Films 435, 49 (2003).

    Article  CAS  Google Scholar 

  30. F. Jianguo Lu, Yinzhu Zhang, Zhizhen Ye, Lei Wang, Binghui Zhao, and Jinhyun Huang, Mater. Lett. 57, 3311 (2003)

    Article  CAS  Google Scholar 

  31. Jingyun Huang, Zhizhen Ye, Hanhong Chen, Binghui Zhao, and Lei Wang, J. Mater. Sci. Lett. 22, 249 (2003).

    Article  CAS  Google Scholar 

  32. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).

    Article  CAS  Google Scholar 

  33. T. Aoki, Y. Hatanaka, and D.C. Look, Appl. Phys. Lett. 76, 3257 (2000).

    Article  CAS  Google Scholar 

  34. Y.W. Heo, K. Ip, S.J. Park, S.J. Pearton, and D.P. Norton, Appl. Phys. A, 78, 53 (2004).

    Article  CAS  Google Scholar 

  35. Y.R. Ryu, T.S. Lee, and H.W. White, Appl. Phys. Lett. 83, 87 (2003).

    Article  CAS  Google Scholar 

  36. J. Kyu-Hyun Bang, Deuk-Kyu Hwang, Min-Chul Park, Young-Don Ko, Ilgu Yun, and Jae-Min Myoung, Appl. Surface Sci. 210, 177 (2003).

    Article  CAS  Google Scholar 

  37. Y.R. Ryu, S. Zhu, J.D. Budai, H.R. Chandrasekhar, P.F. Miceli, and H.W. White, J. Appl. Phys. 88, 201 (2000).

    Article  CAS  Google Scholar 

  38. Kyoung-Kook Kim, Hyun-Sik Kim, Dae-Kue Hwang, Jae-Hong Lim, and Seong-Ju Park, Appl. Phys. Lett. 83, 63 (2003).

    Article  CAS  Google Scholar 

  39. Y.W. Heo, S.J. Park, K. Ip, S.J. Pearton, D.P. Norton, Appl. Phys. Lett. 83, 1128 (2003).

    Article  CAS  Google Scholar 

  40. Y.W. Heo, K. Ip, S.J. Park, S.J. Pearton, and D.P. Norton, Appl. Phys. A, in press.

  41. Y.W. Kwon, M. Jones, Y. Li, Y.W. Heo, and D.P. Norton, in preparation.

  42. A.B.M. Almamun Ashrafi, I. Suemune, H. Kumano, and S. Tanaka, Jpn. J. Appl. Phys. 41, L1281 (2002).

    Google Scholar 

  43. E.H. Nicollian and J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (New York: John Wiley & Sons, 1982), pp. 492–580.

    Google Scholar 

  44. Y.W. Heo, Y.W. Kwon, Y. Li, S.J. Pearton, and D.P. Norton, Appl. Phys. Lett. 84, 3474 (2004).

    Article  CAS  Google Scholar 

  45. J.M. Shah, Y.-L. Li, T. Gessmann, and E.F. Schubert, J. Appl. Phys. 94, 2627 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heo, Y.W., Kwon, Y.W., Li, Y. et al. Properties of phosphorus-doped (Zn,Mg)O thin films and device structures. J. Electron. Mater. 34, 409–415 (2005). https://doi.org/10.1007/s11664-005-0120-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0120-7

Key words

Navigation