Skip to main content
Log in

Chlorine-passivated superatom Al37 clusters for nonlinear optics

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Utilizing a facile top-down synthetic procedure, here we report the finding of a chlorine-passivated Al37 superatom cluster. It is demonstrated that the presence of electrophilic groups, severing as protecting ligands, alters the valence electron count of the metallic core and stabilize the as-prepared aluminum clusters especially when even-numbered chlorine atoms are located at equilibrium positions. Following the discussion regarding their reasonable stabilities, we illustrate the feasible reaction pathways in forming such chlorine-passivated Al37 superatom clusters which bear delocalized superatomic orbitals with five valence 3P5 electrons shifting to the chlorine ligands indicative of a closed electron shell 2F14 of the metal core. The successful synthesis of such chlorine-protected aluminum clusters evidences the compatibility of general theory of cluster chemistry in both gas phase and wet chemistry. Such simple-ligand-protected aluminum clusters exhibit reverse-saturated-absorption (RSA) nonlinear optical property pertaining to electronic transitions within the discrete energy states of cluster materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo Z, Castleman AW. Acc Chem Res, 2014, 47: 2931–2940

    Article  CAS  PubMed  Google Scholar 

  2. Reber AC, Khanna SN. Acc Chem Res, 2017, 50: 255–263

    Article  CAS  PubMed  Google Scholar 

  3. Häkkinen H. Chem Soc Rev, 2008, 37: 1847–1859

    Article  CAS  Google Scholar 

  4. Clemenger K. Phys Rev B, 1985, 32: 1359–1362

    Article  CAS  Google Scholar 

  5. Fedrigo S, Harbich W, Buttet J. Phys Rev B, 1993, 47: 10706–10715

    Article  CAS  Google Scholar 

  6. de Heer WA, Selby K, Kresin V, Masui J, Vollmer M, Chatelain A, Knight WD. Phys Rev Lett, 1987, 59: 1805–1808

    Article  PubMed  Google Scholar 

  7. Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML. Phys Rev Lett, 1984, 52: 2141–2143

    Article  CAS  Google Scholar 

  8. de Heer WA. Rev Mod Phys, 1993, 65: 611–676

    Article  Google Scholar 

  9. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS. Coord Chem Rev, 2006, 250: 2811–2866

    Article  CAS  Google Scholar 

  10. Li WL, Romanescu C, Jian T, Wang LS. J Am Chem Soc, 2012, 134: 13228–13231

    Article  CAS  PubMed  Google Scholar 

  11. Luo Z, Castleman Jr. AW, Khanna SN. Chem Rev, 2016, 116: 14456–14492

    Article  CAS  PubMed  Google Scholar 

  12. Leuchtner RE, Harms AC, Castleman Jr. AW. J Chem Phys, 1989, 91: 2753–2754

    Article  CAS  Google Scholar 

  13. Cheng L, Yuan Y, Zhang X, Yang J. Angew Chem Int Ed, 2013, 52: 9035–9039

    Article  CAS  Google Scholar 

  14. Qian H, Zhu Y, Jin R. J Am Chem Soc, 2010, 132: 4583–4585

    Article  CAS  PubMed  Google Scholar 

  15. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Science, 2007, 318: 430–433

    Article  CAS  PubMed  Google Scholar 

  16. Whetten RL, Price RC. Science, 2007, 318: 407–408

    Article  CAS  PubMed  Google Scholar 

  17. Zeng C, Chen Y, Kirschbaum K, Lambright KJ, Jin R. Science, 2016, 354: 1580–1584

    Article  CAS  PubMed  Google Scholar 

  18. Henke P, Trapp N, Anson CE, Schnöckel H. Angew Chem Int Ed, 2010, 49: 3146–3150

    Article  CAS  Google Scholar 

  19. Klinkhammer KW, Uhl W, Wagner J, Hiller W. Angew Chem Int Ed Engl, 1991, 30: 179–180

    Article  Google Scholar 

  20. Schnockel H. Chem Rev, 2010, 110: 4125–4163

    Article  CAS  PubMed  Google Scholar 

  21. Ecker A, Weckert E, Schnöckel H. Nature, 1997, 387: 379–381

    Article  CAS  Google Scholar 

  22. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H. Proc Natl Acad Sci USA, 2008, 105: 9157–9162

    Article  PubMed  Google Scholar 

  23. Luo Z, Reber AC, Jia M, Blades WH, Khanna SN, Castleman AW. Chem Sci, 2016, 7: 3067–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yan Z, Bao R, Huang Y, Chrisey DB. J Phys Chem C, 2010, 114: 11370–11374

    Article  CAS  Google Scholar 

  25. Zeng H, Du XW, Singh SC, Kulinich SA, Yang S, He J, Cai W. Adv Funct Mater, 2012, 22: 1333–1353

    Article  CAS  Google Scholar 

  26. Scaramuzza S, Zerbetto M, Amendola V. J Phys Chem C, 2016, 120: 9453–9463

    Article  CAS  Google Scholar 

  27. Sheik-Bahae M, Said AA, van Stryland EW. Opt Lett, 1989, 14: 955–957

    Article  CAS  PubMed  Google Scholar 

  28. Wu H, Yuan C, Luo Z. J Mater Chem C, 2017, 5: 7561–7566

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Wallingford: Gaussian, Inc., 2009, 19: 227–238

    Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  31. Adamo C, Barone V. J Chem Phys, 1999, 110: 6158–6170

    Article  CAS  Google Scholar 

  32. Gonzalez C, Schlegel HB. J Chem Phys, 1989, 90: 2154–2161

    Article  CAS  Google Scholar 

  33. Glendening ED, Landis CR, Weinhold F. WIREs Comput Mol Sci, 2012, 2: 1–42

    Article  CAS  Google Scholar 

  34. Podagatlapalli GK, Hamad S, Sreedhar S, Tewari SP, Venugopal Rao S. Chem Phys Lett, 2012, 530: 93–97

    Article  CAS  Google Scholar 

  35. Luo YR. Handbook of Bond Dissociation Energies in Organic Compounds. Boca Raton: Taylor & Francis Group, LLC, 2002

    Book  Google Scholar 

  36. Kuladeep R, Jyothi L, Prakash P, Mayank Shekhar S, Durga Prasad M, Narayana Rao D. J Appl Phys, 2013, 114: 243101

    Article  CAS  Google Scholar 

  37. Jin R, Liu C, Zhao S, Das A, Xing H, Gayathri C, Xing Y, Rosi NL, Gil RR, Jin R. ACS Nano, 2015, 9: 8530–8536

    Article  CAS  PubMed  Google Scholar 

  38. Aguado A, López JM. J Phys Chem Lett, 2013, 4: 2397–2403

    Article  CAS  Google Scholar 

  39. Abreu MB, Powell C, Reber AC, Khanna SN. J Am Chem Soc, 2012, 134: 20507–20512

    Article  CAS  PubMed  Google Scholar 

  40. Castro-Lopez M, Brinks D, Sapienza R, van Hulst NF. Nano Lett, 2011, 11: 4674–4678

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Program of Frontier Sciences (QYZDB-SSW-SLH024), the National Natural Science Foundation of China (21722308) and the National Thousand Youth Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixun Luo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Luo, Z. Chlorine-passivated superatom Al37 clusters for nonlinear optics. Sci. China Chem. 61, 1619–1623 (2018). https://doi.org/10.1007/s11426-018-9316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9316-4

Keywords

Navigation