Skip to main content

Advertisement

Log in

Assessment of soils contamination with veterinary antibiotic residues in Northern Poland using developed MAE-SPE-LC/MS/MS methods

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Among the wide range of compounds reaching the soil are the veterinary antimicrobials. Since no regulations regarding acceptable levels of drug concentrations in the environment exist, monitoring tests, particularly concerning soils, are carried out very rarely. This study presents a preliminary assessment of the contamination of agricultural soils in Northern Poland with seven antimicrobial veterinary medicines which has never been carried out before. Veterinary drugs were detected in 54% of the examined soil samples; the most commonly detected drugs were sulfonamides and trimethoprim. The highest indicated concentrations refer to enrofloxacin (57.0 μg kg−1) and trimethoprim (47.8 μg kg−1). The presence of these target drugs in the soil environment confirms the need for further monitoring studies. The analytical methods developed in this study are an excellent tool to achieve this goal and allow an estimation of the risk connected with the presence of veterinary antimicrobials in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreu V, Vazquez-Roig P, Blasco C, Picó Y (2009) Determination of tetracycline residues in soil by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 394:1329–1339. doi:10.1007/s00216-009-2635-x

    Article  CAS  Google Scholar 

  • Beausse J (2004) Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances. TrAC Trends Anal Chem 23:753–761. doi:10.1016/j.trac.2004.08.005

    Article  CAS  Google Scholar 

  • Białk-Bielińska A, Siedlewicz G, Stepnowski P et al (2011a) A very fast and simple method for the determination of sulfonamide residues in seawaters. Anal Methods 3:1371. doi:10.1039/c0ay00763c

    Article  Google Scholar 

  • Białk-Bielińska A, Stolte S, Arning J et al (2011b) Ecotoxicity evaluation of selected sulfonamides. Chemosphere 85:928–933. doi:10.1016/j.chemosphere.2011.06.058

    Article  Google Scholar 

  • Białk-Bielińska A, Maszkowska J, Mrozik W et al (2012) Sulfadimethoxine and sulfaguanidine: their sorption potential on natural soils. Chemosphere 86:1059–1065. doi:10.1016/j.chemosphere.2011.11.058

    Article  Google Scholar 

  • Borecka M, Białk-Bielińska A, Siedlewicz G et al (2013) A new approach for the estimation of expanded uncertainty of results of an analytical method developed for determining antibiotics in seawater using solid-phase extraction disks and liquid chromatography coupled with tandem mass spectrometry technique. J Chromatogr A 1304:138–146. doi:10.1016/j.chroma.2013.07.018

    Article  CAS  Google Scholar 

  • Chen C, Li J, Chen P et al (2014) Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environ Pollut 193:94–101. doi:10.1016/j.envpol.2014.06.005

    Article  CAS  Google Scholar 

  • Chenxi W, Spongberg AL, Witter JD (2008) Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere 73:511–518. doi:10.1016/j.chemosphere.2008.06.026

    Article  CAS  Google Scholar 

  • Christian T, Schneider RJ, Färber HA et al (2003) Determination of antibiotic residues in manure, soil, and surface waters *. Acta Hydrochim Hydrobiol 31:36–44

    Article  CAS  Google Scholar 

  • Díaz-Cruz M (2007) Recent advances in LC-MS residue analysis of veterinary medicines in the terrestrial environment. TrAC Trends Anal Chem 26:637–646. doi:10.1016/j.trac.2007.04.004

    Article  Google Scholar 

  • Díaz-Cruz MS, Barceló D (2005) LC-MS2 trace analysis of antimicrobials in water, sediment and soil. TrAC Trends Anal Chem 24:645–657. doi:10.1016/j.trac.2005.05.005

    Article  Google Scholar 

  • Dzierżawski A, Cybulski W (2012) The need for prudent use of antibiotics in veterinary practice. Życie Weter 87:316–321

    Google Scholar 

  • European Medicines Agency (2011) Sales of veterinary antimicrobial agents in 25 EU / EEA countries in Third ESVAC report. Eur Med Agency 57

  • European Medicines Agency (2014) Sales of veterinary antimicrobial agents in 29 European countries in 2014

  • Golet EM, Strehler A, Alder AC, Giger W (2002) Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal Chem 74:5455–5462. doi:10.1021/ac025762m

    Article  CAS  Google Scholar 

  • Ho YB, Zakaria MP, Latif PA, Saari N (2012) Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1262:160–168. doi:10.1016/j.chroma.2012.09.024

    Article  CAS  Google Scholar 

  • Ho YB, Zakaria MP, Latif PA, Saari N (2014) Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. Sci Total Environ 488–489:261–267. doi:10.1016/j.scitotenv.2014.04.109

    Article  Google Scholar 

  • Hu W, Ma L, Guo C, et al (2012) Simultaneous extraction and determination of fluoroquinolones, tetracyclines and sulfonamides antibiotics in soils using optimised solid phase extraction chromatography- tandem mass spectrometry. Int J Environ Anal Chem 37–41

  • Huang Y, Cheng M, Li W et al (2013) Simultaneous extraction of four classes of antibiotics in soil, manure and sewage sludge and analysis by liquid chromatography-tandem mass spectrometry with the isotope-labelled internal standard method. Anal Methods 5:3721–3731. doi:10.1039/c3ay40220g

    Article  CAS  Google Scholar 

  • Jacobsen AM, Halling-Sørensen B, Ingerslev F, Honoré Hansen S (2004) Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1038:157–170. doi:10.1016/j.chroma.2004.03.034

    Article  CAS  Google Scholar 

  • Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93:267–278. doi:10.1016/S0167-8809(01)00350-4

    Article  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13. doi:10.1016/j.ecolind.2007.06.002

    Article  CAS  Google Scholar 

  • Kemper N, Farber H, Skutlarek D, Krieter J (2008) Analysis of antibiotic residues in liquid manure and leachate of dairy farms in Northern Germany. Agric Water Manag 95:1288–1292. doi:10.1016/j.agwat.2008.05.008

    Article  Google Scholar 

  • Kong WD, Zhu YG, Liang YC et al (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.) Environ Pollut 147:187–193. doi:10.1016/j.envpol.2006.08.016

    Article  CAS  Google Scholar 

  • Kumirska J, Migowska N, Caban M et al (2015) Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples. Sci Total Environ 508:498–505. doi:10.1016/j.scitotenv.2014.12.020

    Article  CAS  Google Scholar 

  • Li Y-W, Wu X-L, Mo C-H et al (2011) Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China. J Agric Food Chem 59:7268–7276. doi:10.1021/jf1047578

    Article  Google Scholar 

  • Li C, Chen J, Wang J et al (2015) Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci Total Environ 521–522:101–107. doi:10.1016/j.scitotenv.2015.03.070

    Article  Google Scholar 

  • Łukaszewicz P, Maszkowska J, Mulkiewicz E, Kumirska J, Stepnowski P, Caban M (2016a) Impact of veterinary pharmaceuticals on the agricultural environment: a re-inspection. Springer, Switzerland

    Google Scholar 

  • Łukaszewicz P, Kumirska J, Białk-Bielińska A, et al (2016b) Application of high performance liquid chromatography for hydrolytic stability assessment of selected antibiotics in aqueous environment. Curr Anal Chem 12(4):324–329. doi:10.2174/1573411012999160401124502

  • Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579. doi:10.1016/j.envpol.2006.11.035

    Article  Google Scholar 

  • Maszkowska J, Białk-Bielińska A, Mioduszewska K et al (2015) Sorption of sulfisoxazole onto soil-an insight into different influencing factors. Environ Sci Pollut Res 22:12182–12189. doi:10.1007/s11356-015-4445-3

    Article  CAS  Google Scholar 

  • Migowska N, Caban M, Stepnowski P, Kumirska J (2012) Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography-mass spectrometry and gas chromatography with electron capture detection. Sci Total Environ 441:77–88. doi:10.1016/j.scitotenv.2012.09.043

    Article  CAS  Google Scholar 

  • Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ (2012) Combination of microwave-assisted micellar extraction with liquid chromatography tandem mass spectrometry for the determination of fluoroquinolone antibiotics in coastal marine sediments and sewage sludges samples. Biomed Chromatogr 26:33–40. doi:10.1002/bmc.1621

    Article  CAS  Google Scholar 

  • Picó Y, Andreu V (2007) Fluoroquinolones in soil--risks and challenges. Anal Bioanal Chem 387:1287–1299. doi:10.1007/s00216-006-0843-1

    Article  Google Scholar 

  • Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722. doi:10.1016/S0045-6535(99)00442-7

    Article  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. doi:10.1016/j.chemosphere.2006.03.026

    Article  CAS  Google Scholar 

  • Sassman SA, Sarmah AK, Lee LS (2007) Sorption of tylosin a, D, and a-aldol and degradation of tylosin a in soils. Environ Toxicol Chem 26:1629. doi:10.1897/07-007R.1

    Article  CAS  Google Scholar 

  • Solliec M, Roy-Lachapelle A, Gasser MO, Coté C, Généreux MSS (2016) Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Sci Total Environ 543:524–535. doi:10.1016/j.scitotenv.2015.11.061

    Article  CAS  Google Scholar 

  • Song W, Ding Y, Chiou CT, Li H (2010) Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure. J Environ Qual 39:1211. doi:10.2134/jeq2009.0090

    Article  CAS  Google Scholar 

  • Speltini A, Sturini M, Maraschi F et al (2011) Analytical methods for the determination of fluoroquinolones in solid environmental matrices. TrAC Trends Anal Chem 30:1337–1350. doi:10.1016/j.trac.2011.04.011

    Article  CAS  Google Scholar 

  • Stone JJ, Dreis EK, Lupo CD, Clay S a (2011) Land application of tylosin and chlortetracycline swine manure: impacts to soil nutrients and soil microbial community structure. J Environ Sci Health B 46:752–762. doi: 10.1080/03601234.2011.603988

  • Sturini M, Speltini A, Maraschi F et al (2010) Solvent-free microwave-assisted extraction of fluoroquinolones from soil and liquid chromatography-fluorescence determination. J Chromatogr A 1217:7316–7322. doi:10.1016/j.chroma.2010.09.053

    Article  CAS  Google Scholar 

  • Tadeo JL, Sánchez-Brunete C, Albero B et al (2012) Analysis of emerging organic contaminants in environmental solid samples. Cent Eur J Chem 10:480–520. doi:10.2478/s11532-011-0157-9

    Google Scholar 

  • Tasho RP, Cho JY (2016) Science of the total environment veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: a review. Sci Total Environ 563–564:366–376. doi:10.1016/j.scitotenv.2016.04.140

    Article  Google Scholar 

  • Teuber M (2001) Veterinary use and antibiotic resistance. Curr Opin Microbiol 4:493–499. doi:10.1016/S1369-5274(00)00241-1

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils–a review. J Plant Nutr Soil Sci 166:145–167. doi:10.1002/jpln.200390023

    Article  CAS  Google Scholar 

  • Turiel E, Martín-Esteban A, Tadeo JL (2006) Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV. Anal Chim Acta 562:30–35. doi:10.1016/j.aca.2006.01.054

    Article  CAS  Google Scholar 

  • Wagil M, Maszkowska J, Białk-Bielińska A et al (2014) Determination of metronidazole residues in water, sediment and fish tissue samples. Chemosphere. doi:10.1016/j.chemosphere.2013.12.061

  • Wagil M, Białk-Bielińska A, Maszkowska J et al (2015) Critical points in the evaluation of analytical methods based on liquid chromatography separation for the determination of doramectin in different environmental samples. Chemosphere 119:S9–S15. doi:10.1016/j.chemosphere.2014.03.137

    Article  CAS  Google Scholar 

  • Wei R, Ge F, Zhang L et al (2016) Occurrence of 13 veterinary drugs in animal manure-amended soils in eastern China. Chemosphere 144:2377–2383. doi:10.1016/j.chemosphere.2015.10.126

    Article  CAS  Google Scholar 

  • Zuloaga O, Navarro P, Bizkarguenaga E et al (2012) Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: a review. Anal Chim Acta 736:7–29. doi:10.1016/j.aca.2012.05.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Science Centre (Poland) under decision UMO-2014/13/N/ST4/04127. The authors are also grateful to Dominika Antczak for her support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Łukaszewicz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors state that the research did not include human and/or animal participants.

Additional information

Responsible editor: Ester Heath

Electronic supplementary material

ESM 1

(DOCX 78.4 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Łukaszewicz, P., Kumirska, J., Białk-Bielińska, A. et al. Assessment of soils contamination with veterinary antibiotic residues in Northern Poland using developed MAE-SPE-LC/MS/MS methods. Environ Sci Pollut Res 24, 21233–21247 (2017). https://doi.org/10.1007/s11356-017-9757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9757-z

Keywords

Navigation