Skip to main content
Log in

Effect of flow rate on growth and oxygen consumption of biofilm in gravity sewer

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The function of sewer as reactors must rely on the biofilm in it. In this paper, the formation, structure, oxygen transfer, and activity of the biofilm under different hydraulic conditions were studied by the microelectrode technology, oxygen uptake rate (OUR) technology, and 454 high-throughput pyrosequencing technology. Results showed that when the wall-shear stresses were 1.12, 1.29, and 1.45 Pa, the porosity of the steady-state biofilm were 69.1, 64.4, and 55.1 %, respectively. The maximum values of OUR were 0.033, 0.027, and 0.022 mg/(L*s), respectively, and the COD removal efficiency in the sewers reached 40, 35, and 32 %, respectively. The research findings had an important significance on how to improve the treatment efficiency of the sewers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ai HN, Zhang DJ, He Q, PL L (2012) A protocol for the characterization of biodegradable cod fractions (S-S, X-S, S-A and S-F) in municipal wastewater. Fresenius Environ Bull 21:1027–1033

    CAS  Google Scholar 

  • Ai H, Xu J, Huang W, He Q, Ni B, Wang Y (2016) Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers. Water Science and Technology: a Journal of the International Association on Water Pollution Research 73:1572–1582. doi:10.2166/wst.2015.633

    Article  Google Scholar 

  • APHA, Clescerl LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association, American Water Works Association, Water Pollution Control Federation

  • Auguet O, Pijuan M, Borrego CM, Gutierrez O (2016) Control of sulfide and methane production in anaerobic sewer systems by means of downstream nitrite dosage. Sci Total Environ 550:1116–1125. doi:10.1016/j.scitotenv.2016.01.130

    Article  CAS  Google Scholar 

  • Baban A, Talinli I (2009) Modeling of organic matter removal and nitrification in sewer systems - an approach to wastewater treatment. Desalination 246:640–647. doi:10.1016/j.desal.2008.07.018

    Article  CAS  Google Scholar 

  • Chen GH, Leung DHW, Huang JC (2001) Removal of dissolved organic carbon in sanitary gravity sewer. Journal of Environmental Engineering-Asce 127:295–301. doi:10.1061/(asce)0733-9372(2001)127:4(295)

    Article  CAS  Google Scholar 

  • de Beer D, Schramm A (1999) Micro-environments and mass transfer phenomena in biofilms studied with microsensors. Water Sci Technol 39:173–178

    Article  Google Scholar 

  • Figueroa-Gonzalez I, Quijano G, Laguna I, Munoz R, Garcia-Encina PA (2016) A fundamental study on biological removal of N2O in the presence of oxygen. Chemosphere 158:9–16. doi:10.1016/j.chemosphere.2016.05.046

    Article  CAS  Google Scholar 

  • Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307. doi:10.1016/j.bej.2010.01.011

    Article  CAS  Google Scholar 

  • Gutierrez O, Sudarjanto G, Ren G, Ganigue R, Jiang G, Yuan Z (2014) Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems. Water Res 48:569–578. doi:10.1016/j.watres.2013.10.021

    Article  CAS  Google Scholar 

  • Guzmán K, La Motta EJ, McCorquodale JA, Rojas S, Ermogenous M (2007) Effect of biofilm formation on roughness coefficient and solids deposition in small-diameter PVC sewer pipes. J Environ Eng 133:364–371

    Article  Google Scholar 

  • Jiang F, Leung DH-w, Li S, Chen G-H, Okabe S, van Loosdrecht MCM (2009) A biofilm model for prediction of pollutant transformation in sewers. Water Res 43:3187–3198. doi:10.1016/j.watres.2009.04.043

    Article  CAS  Google Scholar 

  • Jiang G, Gutierrez O, Sharma KR, Yuan Z (2010) Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. Water Res 44:4241–4251. doi:10.1016/j.watres.2010.05.030

    Article  CAS  Google Scholar 

  • Jiang G, Sharma KR, Yuan Z (2013) Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor. Water Res 47:1783–1792. doi:10.1016/j.watres.2012.12.036

    Article  CAS  Google Scholar 

  • Jiang G, Keller J, Bond PL (2014) Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion. Water Res 65:157–169. doi:10.1016/j.watres.2014.07.026

    Article  CAS  Google Scholar 

  • Jin P, Wang B, Jiao D, Sun G, Wang B, Wang XC (2015) Characterization of microflora and transformation of organic matters in urban sewer system. Water Res 84:112–119. doi:10.1016/j.watres.2015.07.008

    Article  CAS  Google Scholar 

  • Kong Y, Xia Y, Nielsen JL, Nielsen PH (2007) Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology-Sgm 153:4061–4073. doi:10.1099/mic.0.2007/007245-0

    Article  CAS  Google Scholar 

  • Kunkel SA, Pagilla KR, Stark BC (2015) Directed evolution to produce sludge communities with improved oxygen uptake abilities. Appl Microbiol Biotechnol 99:10725–10734. doi:10.1007/s00253-015-6891-8

    Article  CAS  Google Scholar 

  • Lamotta EJ (1976) Internal diffusion and reaction in biological films. Environmental Science & Technology 10:765–769. doi:10.1021/es60119a003

    Article  CAS  Google Scholar 

  • Liu Y, Tugtas AE, Sharma KR, Ni B-J, Yuan Z (2016) Sulfide and methane production in sewer sediments: field survey and model evaluation. Water Res 89:142–150. doi:10.1016/j.watres.2015.11.050

    Article  CAS  Google Scholar 

  • Ma S-j, Ding L-l, Huang H, Geng J-j, Xu K, Zhang Y, Ren H-q (2016) Effects of DO levels on surface force, cell membrane properties and microbial community dynamics of activated sludge. Bioresour Technol 214:645–652. doi:10.1016/j.biortech.2016.04.132

    Article  CAS  Google Scholar 

  • Ozer A, Kasirga E (1995) Substrate removal in long sewer lines. Water Sci Technol 31:213–218. doi:10.1016/0273-1223(95)00338-n

    Article  CAS  Google Scholar 

  • Rochex A, Godon J-J, Bernet N, Escudie R (2008) Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Res 42:4915–4922. doi:10.1016/j.watres.2008.09.015

    Article  CAS  Google Scholar 

  • Rudelle E, Vollertsen J, Hvitvedjacobsen T, Nielsen AH (2009) Anaerobic transformations of wastewater organic matter in sewer systems. Proceedings of the Water Environment Federation Vollertsen: 501–513

  • Shen Y, Wang M, Chang IS, Ng HY (2013) Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II. Bioresour Technol 136:707–710. doi:10.1016/j.biortech.2013.02.069

    Article  CAS  Google Scholar 

  • Smolders GJF, Vandermeij J, Vanloosdrecht MCM, Heijnen JJ (1994) Model of the anaerobic metabolism of the biological phosphorus removal process—stoichiometry and Ph influence. Biotechnol Bioeng 43:461–470. doi:10.1002/bit.260430605

    Article  CAS  Google Scholar 

  • van Loosdrecht MCM, Heijnen JJ, Eberl H, Kreft J, Picioreanu C (2002) Mathematical modelling of biofilm structures. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology 81:245–256. doi:10.1023/a:1020527020464

    Article  Google Scholar 

  • vanLoosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ (1995) Biofilm structures. Water Sci Technol 32:35–43. doi:10.1016/0273-1223(96)00005-4

    Article  CAS  Google Scholar 

  • Wang Y, Bott C, Nerenberg R (2016) Sulfur-based denitrification: effect of biofilm development on denitrification fluxes. Water Res 100:184–193. doi:10.1016/j.watres.2016.05.020

    Article  CAS  Google Scholar 

  • Xin X, He J, Wang Y, Feng J, Qiu W (2016) Role of aeration intensity on performance and microbial community profiles in a sequencing batch reaction kettle (SBRK) for wastewater nutrients rapid removal. Bioresour Technol 201:140–147. doi:10.1016/j.biortech.2015.11.053

    Article  CAS  Google Scholar 

  • Yadav TC, Khardenavis AA, Kapley A (2014) Shifts in microbial community in response to dissolved oxygen levels in activated sludge. Bioresour Technol 165:257–264. doi:10.1016/j.biortech.2014.03.007

    Article  CAS  Google Scholar 

  • Zhang TC, Bishop PL (1994) Density, porosity, and pore structure of biofilms. Water Res 28:2267–2277. doi:10.1016/0043-1354(94)90042-6

    Article  CAS  Google Scholar 

  • Zou X, Hang H-f, Chu J, Zhuang Y-p, Zhang S-l (2009) Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 m3 scale. Bioresour Technol 100:1406–1412. doi:10.1016/j.biortech.2008.09.017

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by the Natural Science Foundation of China through project NSFC51108480 and Fundamental Research Funds for the Central Universities 1061120112CDJZR210025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hainan Ai.

Additional information

Responsible Editor: Gerald Thouand

Highlights

• The oxygen transfer in the biofilm influenced by porosity was explored.

• Different microbial distributions were formed under different oxygen conditions.

• OUR reflected the divergence of oxygen utilization in different structural biofilms.

• COD removal efficiency was well correlated with the biofilm activity and biomass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Li, M., He, Q. et al. Effect of flow rate on growth and oxygen consumption of biofilm in gravity sewer. Environ Sci Pollut Res 24, 427–435 (2017). https://doi.org/10.1007/s11356-016-7710-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7710-1

Keywords

Navigation