Skip to main content
Log in

Genetic and phenotypic diversity of natural American oil palm (Elaeis oleifera (H.B.K.) Cortés) accessions

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Elaeis oleifera has become a valuable genetic resource for the production of interspecific hybrids of E. oleifera (H.B.K) Cortés × Elaeis guineensis Jacq. to address plant disease problems affecting oil palm cultivation. In this study, we evaluated the phenotypic and genetic diversity of accessions of E. oleifera from different countries in South America using morpho-agronomic traits and microsatellite markers (Simple Sequence Repeats, SSRs). Analyses of variance for yield and bunch components demonstrated statistically significant differences among countries and geographical regions for several of the traits evaluated. SSR marker analyses revealed high genetic diversity (H T  = 0.797) and the presence of specific alleles by each country of origin from E. oleifera. The clustering topology obtained showed four distinguishable E. oleifera groups, which matched the geographical distribution of the accessions and thus exhibited a high genetic differentiation (G ST  = 0.512) and a low gene flow N m  = 0.238 among countries. The results enabled us to demonstrate that E. oleifera has a specific genetic structure and a phenotypic variability with different characteristics between origins, and the accessions from each country of origin contributed to the increase in total genetic diversity. A core collection was defined based on the accuracy of the classification of individuals with respect to their country of origin. The information reported in this study will be of great interest to oil palm researchers because new strategies for breeding programs can be developed based on these advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarado A, Escobar R, Henry J (2013) The hybrid O×G Amazon: an alternative for regions affected by bud rot in oil palm. Palmas 34(1):305–314

  • Arias DM, Montoya C, Romero HM (2010) Preliminary results on the molecular characterization of oil palm using microsatellites markers. PALMAS 31(3):35–45

  • Arias D, Montoya C, and Romero H (2013a) Molecular characterization of oil palm Elaeis guineensis Jacq. materials from Cameroon. Plant Genetic Resources: Characterization and Utilization. doi: http://dx.doi.org/10.1017/S1479262112000482 (About DOI), Published online: 04 January 2013

  • Arias D, González M, Prada F, Restrepo E, Romero H (2013b) Morpho-agronomic and molecular characterisation of oil palm Elaeis guineensis Jacq material from Angola. Tree Genet & genomes. doi:10.1007/s11295-013-0637-5, Published online: June 2013

    Google Scholar 

  • Barba, J.; Orellana, F.; Vallejo, G.; Manzano, R (2010) Evaluación agronómica de híbridos interespecíficos de palma de aceite OxG (Elaeis oleífera × Elaeis guineensis) provenientes de diversos orígenes americanos y su tolerancia a la pudrición del cogollo. Primera parte. Palma (Ecuador), (3):11–15.

  • Barcelos E, Amblard P, Berthaud J, Seguin M (2002) Genetic diversity and relationship in American and African oil palm as revealed by RFLP and AFLP molecular markers. Pesq Agrop Brasileira 37(8):1105–1114

    Article  Google Scholar 

  • Billotte N, Risterucci AM, Barcelos E, Noyer JL, Amblard P et al (2001) Development, characterization, and across-taxa utility of oil palm (Elaeis guineensis Jacq) microsatellite markers. Genome 44:413–425

    Article  CAS  PubMed  Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Cochard B, Adon B, Rekima S, Billotte N, Desmier de Chenon R, Koutou A, Nouy B, Omoré A, Purba AR, Glazsmann JC, Noyer JL (2009) Geographic and genetic structure of African oil palm diversity suggest new approaches to breeding. Tree Genet Genomes 5:493–504

  • Corley RHV (1976) The genus Elaeis. In: R.H.V Corley, JJ. Hardon, B.J. Wood (eds.) Oil palm research. Elsevier, Amsterdam, pp. 3–5

  • Corley RHV, Tinker PB (2003) The oil palm. World agricultural series, 4th edn. Blackwell, Oxford

    Google Scholar 

  • Forero DC, Hormaza P, Romero HM (2012) Phenological growth stages of African oil palm (Elaeis guineensis). Ann Appl Biol 160:56–65

    Article  Google Scholar 

  • García JA, Yáñez EE (2000) Aplicación de la metodología alterna para análisis de racimos y muestreo de racimos en tolva. Palmas 21:303–311

    Google Scholar 

  • Gimlet VN (2002) A computer program for analyzing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Goudet J (2002) Institute of Ecology. Biology Building, UNIL software (FSTAT), version 2.9.3.2. http://www2.unil.ch/popgen/softwares/fstat.htm

  • Hedrick PW (2005) Genetics of populations, 3rd edn. Jones and Bartlett, Boston

    Google Scholar 

  • Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG, Kim TS, Cho EG, Park YJ (2007) PowerCore: a program applying the advance M strategy with a heuristics search for establishing core sets. Bioinformatics 23:2155–2162

    Article  CAS  PubMed  Google Scholar 

  • Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L subsp sativa. BMC Plant Biol 8:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Li ZC, Zhang HL, Zeng YW, Yang ZY, Shen SQ, Sun CQ, Wang XK (2002) Studies on sampling strategies for establishment of core collection of rice landrace in Yunnan, China. Genet Resources Crop Evol 49:67–74

    Article  CAS  Google Scholar 

  • Moe KT, Gwag JG, Park YJ (2012) Efficiency of PowerCore in core set development using amplified length polymorphic markers in mungbean. Plant Breed 131:110–117

    Article  CAS  Google Scholar 

  • Navia EA, Avila RA, Daza EE, Restrepo EF, Romero HM (2014) Assessment of tolerance to bud rot in oil palm under field conditions. Eur J Plant Pathol 140:711–720

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Colombia University Press, New York

    Google Scholar 

  • Peakall R, Smouse P (2006) Genetic analysis in Excel. Population genetic software for teaching and research (GENALEX), version 6.0

  • Perrier X, Jacquemoud-Collet JP (2006) Software (DARwin). Available at http://darwin.cirad.fr/darwin

  • Qu L, Li X, Wu G, Yang N (2005) Efficient and sensitive method of DNA silver staining in polyacrylamide gels. Electrophoresis 26:99–101

    Article  CAS  PubMed  Google Scholar 

  • SAS (2003) The SAS system for Windows, release 9.1.3. SAS Institute Inc, Cary, NC

  • Singh R et al (2008) Exploiting an oil palm EST database for the development of gene-derived SSR markers and their exploitation for assessment of genetic diversity. Cell Mol Biol 63(2):227–235. doi:10.2478/s11756-008-0041-z

    CAS  Google Scholar 

  • Syed RA (1979) Studies on oil palm pollination by insects. Bull ent res 69:213–214

    Article  Google Scholar 

  • Torres G, Sarria G, Varon F, Coffey M, Elliot M, Martinez G (2010) First report of bud rot caused by Phytophthora palmivora on African oil palm in Colombia. Plant Dis 94(9):1–163

    Article  Google Scholar 

  • Vallejo G, Cassalett DC (1975) Prospects of growing interspecific hybrids of Elaeis oleífera (H.B.K.) Cortez × Africa in oil palm (Elaeis guineensis Jacq.) in Colombia. Revista ICA Colombia 10(1):19–35

    Google Scholar 

  • Van Hintum T, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetics resources. IPGRI Technical Bulletin No.3 International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to system of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Yan WG, Rutger N, Bryant R, Bockelman HE, Fjellstrom RG, Chen MH, Tai T, McClung A (2007) Development and evaluation of a core subset of the USDA rice germplasm collection. Crop Sci 47:869–876. doi:10.2135/cropsci2006.07.0444

    Article  Google Scholar 

  • Zewdie Y, Tong N, Bosland P (2004) Establishing a core collection of Capsicum using a cluster analysis with enlightened selection of accessions. Genet Resour Crop Evol 51:147–15

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Myriam Cristina Duque and Juan Bosco, researchers at the International Center for Tropical Agriculture (CIAT), and Eloina Mesa for her assistance in the data analysis. The authors also wish to thank Leonardo Rey, Juan Hipólito, and Jorge Aldana. Cenipalma research is funded by the Oil Palm Development Fund (FFP), managed by Fedepalma. Finally, the authors would like to thank the reviewers of this journal for their corrections and kind help to improve this article.

Data archiving statement

The relevant raw data will be available to readers through the DRYAD repository. Accession numbers will be provided as soon as we obtain them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Mauricio Romero.

Additional information

Communicated by W. Ratnam

This article is part of the Topical Collection on Germplasm Diversity

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, D., González, M., Prada, F. et al. Genetic and phenotypic diversity of natural American oil palm (Elaeis oleifera (H.B.K.) Cortés) accessions. Tree Genetics & Genomes 11, 122 (2015). https://doi.org/10.1007/s11295-015-0946-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0946-y

Keywords

Navigation