Skip to main content
Log in

Friction and Vibration of Brake Friction Materials Reinforced with Chopped Glass Fibers

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Friction, wear, and friction-induced vibration of brake friction material reinforced with chopped glass fibers were investigated using a Krauss-type tribometer and a one-fifth-scale brake dynamometer. The friction tests were carried out using friction material specimens based on an experimental formulation slid against gray iron disks. The glass fibers increased the surface hardness and contact stiffness of the friction material but decreased compressibility, friction level, and fade resistance. Wear resistance slightly improved with glass fibers at moderate temperatures, whereas it decreased at temperatures beyond the glass transition temperature of the binder resin. Friction oscillation during sliding changed its mode from stick–slip to harmonic oscillation as the velocity increases and was followed by smooth sliding at higher velocities beyond a critical value. Friction-induced vibrations occurred over a wider velocity range when the friction material contained chopped glass fibers, indicating higher propensity of brake-induced noise. Surface analysis after friction tests revealed that contact stiffness of the friction material surface increased due to promoted contact plateaus fostered by the chopped glass fiber bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Friedrich, K.: Friction and Wear of Polymer Composites. Elsevier, Amsterdam (1986)

    Google Scholar 

  2. Anderson A.E.: Friction materials performance issues. In: Proceedings of Fibers in Friction Material Symposium, pp. 2–49 (1987)

  3. Gopal, P., Dharani, L.R., Blum, F.D.: Fade and wear characteristics of a glass-fiber reinforced phenolic friction material. Wear 174, 119–127 (1994)

    Article  CAS  Google Scholar 

  4. Briscoe, B.J., Ramirez, I., Tweedale, P.J.: Friction of aramid fibre composites. IMechE 10, 15–29 (1988)

    Google Scholar 

  5. Kato, T., Magario, A.: The wear of aramid fiber reinforced brake pads: the role of aramid fiber. Tribol. Trans. 37, 559–565 (1994)

    Article  CAS  Google Scholar 

  6. Halberstadt, M.L., Rhee, S.K., Mansfield, J.A.: Effects of potassium titanate fiber on the wear of automotive brake linings. Wear 46, 109–126 (1978)

    Article  CAS  Google Scholar 

  7. Cho, K.H., Cho, M.H., Kim, S.J., Jang, H.: Tribological properties of potassium titanate in the brake friction material; morphological effects. Tribol. Lett. 32, 59–66 (2008)

    Article  CAS  Google Scholar 

  8. Bijwe, J.: Composites as friction materials: recent developments in non-asbestos fiber reinforced friction materials—a review. Polym. Compos. 18, 378 (1997)

    Article  CAS  Google Scholar 

  9. Dong, F., Blum, F.D., Dharani, L.R.: Lapinus fiber reinforced phenolic composites: flexural and frictional properties. Polym. Polym. Compos. 4, 155–161 (1996)

    CAS  Google Scholar 

  10. Hwang, H.J., Jung, S.L., Cho, K.H., Kim, Y.J., Jang, H.: Tribological performance of brake friction materials containing carbon nanotubes. Wear 268, 519–525 (2010)

    Article  CAS  Google Scholar 

  11. Jang, H., Ko, K., Kim, S.J., Basch, R.H., Fash, J.W.: The effect of metal fibers on the friction performance of automotive brake friction materials. Wear 256, 406 (2004)

    Article  CAS  Google Scholar 

  12. Park, S.B., Cho, K.H., Jung, S.L., Jang, H.: Tribological properties of brake friction materials with steel fibers. Met. Mater. Int. 15, 27–32 (2009)

    Article  CAS  Google Scholar 

  13. Kim, S.J., Cho, M.H., Lim, D.-S., Jang, H.: Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear 251, 1484–1491 (2001)

    Article  Google Scholar 

  14. Nicholson, G.: Facts About Friction. P & W Price Enterprises Inc, Gedoran America Limited, Winchester (1994)

    Google Scholar 

  15. Kosaka, K., Nishizawa, Y., Kurita, Y., Oura, Y.: Influence of Pad Surface Texture on Disk Brake Squeal. SAE Technical Paper. 2011-01-2354 (2011)

  16. Jang, H.: Origin of friction induced vibration. In: Proceedings of 3rd International Forum on Fundamentals of Sliding Friction and Vibration. Korea University (2013)

  17. Lee, S.M., Shin, M.W., Lee, W.K., Jang, H.: The correlation between contact stiffness and stick–slip of brake friction materials. Wear 302, 1414–1420 (2013)

    Article  CAS  Google Scholar 

  18. Kim, S.J., Jang, H.: Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. Tribol. Int. 33, 477–484 (2000)

    Article  CAS  Google Scholar 

  19. Nakano, K., Maegawa, S.: Stick–slip in sliding systems with tangential contact compliance. Tribol. Int. 42, 1771–1780 (2009)

    Article  Google Scholar 

  20. Sherif, H.A., Kossa, S.S.: Relationship between normal and tangential contact stiffness of nominally flat surfaces. Wear 151, 49–62 (1991), ibid. Parameters affecting contact stiffness of nominally flat surface, pp. 113–121 (1991)

    Google Scholar 

  21. Cho, M.H., Kim, S.J., Kim, D.H., Jang, H.: Effects of ingredients on tribological characteristics of a brake lining: an experimental case study. Wear 258, 1682–1687 (2005)

    Article  CAS  Google Scholar 

  22. Knop, A., Scheib, W.: Chemistry and Application of Phenolic Resins. Springer, New York (1979)

    Book  Google Scholar 

  23. Shin, M.W., Cho, K.H., Lee, W.K., Jang, H.: Tribological characteristics of binder resins for brake friction materials at elevated temperatures. Tribol. Lett. 38, 161–168 (2010)

    Article  CAS  Google Scholar 

  24. Bowden, F.P., Tabor, D.: Mechanism of friction and lubrication in metal-working. J. Inst. Petrol. 40, 243–253 (1954)

    CAS  Google Scholar 

  25. Rabinowicz, E.: The intrinsic variables affecting the stick–slip process. Proc. Phys. Soc. 71, 668 (1958)

    Article  Google Scholar 

  26. Gao, C., Kuhlmann-Wilsdorf, D., Makel, D.: The dynamic analysis of stick–slip motion. Wear 173, 1–12 (1994)

    Article  Google Scholar 

  27. Jang, H., Lee, J.S., Fash, J.W.: Compositional effects of the brake friction material on creep groan phenomena. Wear 251, 1477–1483 (2001)

    Article  Google Scholar 

  28. Crolla, D.A., Lang, A.M.: Brake noise and vibration-the state of the art. Veh. Tribol. 18, 165–174 (1991)

    Article  Google Scholar 

  29. Brecht, J., Hoffrichter, W., Fohle, A.: Mechanisms of brake creep groan. SAE Trans. 106(2), 3405–3411 (1997)

    Google Scholar 

  30. Nakano, K.: Two dimensionless parameters controlling the occurrence of stick–slip motion in a 1-DOF system with Coulomb friction. Tribol. Lett. 24, 91–98 (2006)

    Article  Google Scholar 

  31. Fuadi, Z., Maegawa, S., Nakano, K., Adachi, K.: Map of low-frequency stick–slip of a creep groan. Proc. Inst. Mech. Eng. 224, 1235–1246 (2010)

    Google Scholar 

  32. Eriksson, M., Bergman, F., Jacobson, S.: Surface characterization of brake pads after running under silent and squealing conditions. Wear 232, 163–167 (1999)

    Article  CAS  Google Scholar 

  33. Yoon, S.W., Shin, M.W., Lee, W.G., Jang, H.: Effect of surface contact conditions on the stick–slip behavior of brake friction material. Wear 294, 305–312 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Jang, H. Friction and Vibration of Brake Friction Materials Reinforced with Chopped Glass Fibers. Tribol Lett 52, 341–349 (2013). https://doi.org/10.1007/s11249-013-0221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0221-z

Keywords

Navigation