Skip to main content
Log in

The structure of tris(chloromethyl)amine in the gas phase using quantum chemical calculations and gas electron diffraction and as a solid and melt using Raman spectroscopy

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The equilibrium structure of tris(chloromethyl)amine, N(CH2Cl)3, has been determined in the gas phase using electron diffraction. Single-step distance corrections (representing the differences between the interatomic distances from the equilibrium structure and those from the vibrationally averaged structure) and amplitudes of vibration have been computed using semi-empirical molecular dynamics (SE-MD) simulations in order to treat accurately the description of the low-frequency, large-amplitude vibrational modes associated particularly with one CH2Cl group. A series of complementary theoretical calculations using the SOGGA11-X DFT functional with correlation-consistent basis sets of double-, triple-, and quadruple-ζ quality is also presented. The agreement between the experimental and theoretical equilibrium structural parameters attests to the accuracy of the applied theoretical calculations and of our gas-phase structural solution. Raman spectra have been recorded over a range of temperatures, allowing the solid and the melt to be studied, and the Raman-active intramolecular modes to be identified. Free from the influence of intermolecular interaction, the structure of tris(chloromethyl)amine in the gas phase is markedly different to that reported in the literature for the single crystal. This is discussed, and evidence for the anomeric effect in tris(chloromethyl)amine is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Klapötke TM, Krumm B, Scherr M, Steemann FX, Banert K, Joo YH (2009) Experimental and theoretical studies on some energetic functionalized trimethylamine derivatives. Chem Eur J 15:11341–11345

    Article  Google Scholar 

  2. Livingston RL, Vaughan G (1956) The molecular structure of perfluorotrimethylamine by electron diffraction. J Am Chem Soc 78:4866–4869

    Article  CAS  Google Scholar 

  3. Bürger H, Niepel H, Pawelke G (1979) Vibrational spectra and normal coordinate analysis of CF3 compounds: part XXVII. Perfluorotrimethylamine. Reinvestigation of the molecular structure by electron diffraction. J Mol Struct 54:159–174

    Article  Google Scholar 

  4. Dimitrov A, Mack HG, Rüdiger S, Seppelt K, Oberhammer H (1994) Structure and conformation of tris(2,2,2-trifluoroethyl)amine, N(CH2CF3)3, in the gaseous and solid state. J Phys Chem A 98:11401–11405

    Article  CAS  Google Scholar 

  5. Beagley B, Medwid AR (1977) Vibrational force fields and amplitudes and zero-point average structures of (CH3)3Y molecules (Y = N, P, As, Sb, Bi): a combination of electron-diffraction and spectroscopic data. J Mol Struct 38:229–238

    Article  CAS  Google Scholar 

  6. Higginbotham HK, Bartell LS (1965) Electron diffraction study of CH3NH2 and CD3ND2. J Chem Phys 42:1131–1132

    Article  CAS  Google Scholar 

  7. Beagley B, Hewitt TG (1968) Electron diffraction study of gaseous dimethylamine and trimethylamine. Trans Faraday Soc 64:2561–2570

    Article  CAS  Google Scholar 

  8. Iijima T, Jimbo H, Taguchi M (1986) The molecular structure of methylamine in the vapour phase. J Mol Struct 144:381–383

    Article  CAS  Google Scholar 

  9. Takeuchi H, Kojima T, Egawa T, Konaka S (1992) Molecular structure and conformations of diethylamine and triethylamine as determined by gas electron diffraction, ab initio calculations and vibrational spectroscopy. J Phys Chem A 96:4389–4396

    Article  CAS  Google Scholar 

  10. Nishikawa T, Itoh T, Shimoda K (1955) Molecular structure of methylamine from its microwave spectrum. J Chem Phys 23:1735–1736

    Article  CAS  Google Scholar 

  11. Lide Jr DR (1957) Structure of the methylamine molecule. I. Microwave spectrum of CD3ND2. J Chem Phys 27:343–352

    Article  CAS  Google Scholar 

  12. Lide Jr DR (1958) Microwave spectra of molecules exhibiting internal rotation. III. Trimethylamine. J Chem Phys 28:572–576

    Article  CAS  Google Scholar 

  13. Kumar K (1971) Rotational isomerism in triethylamine. Chem Phys Lett 9:504–507

    Article  CAS  Google Scholar 

  14. Crocker, C, Goggin, PL (1978) Infrared and Raman spectroscopic studies of conformations in liquid and solid triethyl-, diethyl(methyl)- and ethyldimethyl-amines, -phosphines and -arsines. J Chem Soc Dalton Trans 388–394

  15. Bushweller CH, Fleischman SH, Grady GL, McGoff P, Rithner CD, Whalon MR, Brennan JG, Marcantonio RP, Dominigue RP (1982) Stereodynamics of diethylmethylamine and triethylamine. J Am Chem Soc 104:6224–6236

    Article  CAS  Google Scholar 

  16. Lemieux RU (1971) Newer developments in the conformational analysis of carbohydrates. Pure Appl Chem 27:527–548

    Article  CAS  Google Scholar 

  17. Edward JT (1955) Stability of glycosides to acid hydrolysis. Chem Ind:1102–1104

  18. Oberhammer H (2006) Anomeric effect in the N-C-F moiety. Mendeleev Commun 16:136–137

    Article  Google Scholar 

  19. Christen D, Mack HG, Rüdiger S, Oberhammer H (1996) The anomeric effect in (fluoromethyl)dimethylamine, CH2FN(CH3)2. J Am Chem Soc 118:3720–3723

    Article  CAS  Google Scholar 

  20. Jin AD, Zhu XL, Kirchmeier RL, Shreeve JM, Patel NR, Oberhammer H (1994) The effect of fluorination in trimethylamine—gas-phase structures of CF3N(CH3)2 and (CF3)2NCH3. J Mol Struct 323:129–134

    Article  CAS  Google Scholar 

  21. Minkwitz R, Lamek D, Korn M, Oberhammer H (1993) On the gas phase structure of CF3NCl2 and the preparation of CF3NCl2F+MF6 (M = As, Sb) and CF2=NClF+SbF6 . Anorg Allg Chem 619:2066–2070

    Article  CAS  Google Scholar 

  22. Minkwitz R, Lamek D, Korn M, Oberhammer H (1994) The gas phase structure of CF3NBr2 and (CF3)2NBr. Anorg Allg Chem 620:353–356

    Article  CAS  Google Scholar 

  23. Bürger H, Pawelke G, Oberhammer H (1982) Vibrational spectra and normal coordinate analysis of CF3 compounds part XLI. Vibrational spectra, normal coordinate analysis and electron diffraction investigation of hexafluoroazomethane and cis- and trans-1,1,1,4,4,4-hexafluorobut-2-ene. J Mol Struct 84:49–68

    Article  Google Scholar 

  24. Bürger H, Pawelke G, Oberhammer H (1985) Vibrational spectra and normal coordinate analysis of CF3 compounds part XLVI. Synthesis, vibrational spectra, normal coordinate analysis and electron diffraction investigation of the cis isomer of hexafluoroazomethane. J Mol Struct 128:283–295

    Article  Google Scholar 

  25. Dorofeeva OV, Mitin AV, Altova EP, Karasev NM, Nabiev OG, Vilkov LV, Oberhammer H (2011) Anomeric effect in N-aziomethylpyrrolidine: gas-phase electron diffraction and theoretical study. Phys Chem Chem Phys 13:1490–1498

    Article  CAS  Google Scholar 

  26. Radom L, Hehre WJ, Pople JA (1972) Molecular orbital theory of the electronic structure of organic compounds XIII. Fourier component analysis of internal rotation potential functions in saturated molecules. J Am Chem Soc 94:2371–2381

    Article  CAS  Google Scholar 

  27. Schleyer PR, Kos AJ (1983) The importance of negative (anionic) hyperconjugation. Tetrahedron 39:1141–1150

    Article  CAS  Google Scholar 

  28. Schleyer PR, Jemmis ED, Spitznagel GW (1985) Do anomeric effects involving the second-row substituents, chlorine, mercapto and phosphino exist? Stabilization energies and structural preferences. J Am Chem Soc 107:6393–6394

    Article  CAS  Google Scholar 

  29. Reed AE, Schleyer PR (1988) The anomeric effect with central atoms other than carbon: strong interactions between nonbonded substituents in mono- and polyfluorinated first and second-row amines. Inorg Chem 27:3969–3987

    Article  CAS  Google Scholar 

  30. Rastelli A, Cocchi M (1991) Model calculations of chemical interactions part 3: rotational energy profiles in simple molecules: evaluation, additivity and role of bond-bond, bond-lone-pair and lone-pair-lone-pair interactions. J Chem Soc Faraday Trans 87:249–258

    Article  CAS  Google Scholar 

  31. Szinicz L (2005) History of chemical and biological warfare agents. Toxicology 214:167–181

    Article  CAS  Google Scholar 

  32. Fraga CG, Bronk K, Dockendorff BP, Heredia-Langner A (2016) Organic chemical attribution signatures for the sourcing of a mustard agent and its starting materials. Anal Chem 88:5406–5413

    Article  CAS  Google Scholar 

  33. Centers for Disease Control and Prevention. Facts about nitrogen mustards. https://emergency.cdc.gov/agent/nitrogenmustard/basics/facts.asp. Accessed 30 Oct 2016

  34. Organization for the Prohibition of Chemical Weapons. Annex of chemicals. https://www.opcw.org/chemical-weapons-convention/annexes/annex-on-chemicals. Accessed 30 Oct 2016

  35. Mitzel NW, Brown DH, Parsons S, Brain PT, Pulham CR, Rankin DWH (1998) Differences between gas-phase and solid-state molecular structures of the simplest phosphonium ylide, Me3P=CH2. Angew Chem Int Ed 37:1670–1672

    Article  CAS  Google Scholar 

  36. Mitzel NW, Lustig C, Berger RJF, Runeberg N (2002) Luminescence phenomena and solid-state structures of trimethyl and triethylgallium. Angew Chem Int Ed 41:2519–2522

    Article  CAS  Google Scholar 

  37. Mitzel NW, Vojinovic K, Foerster T, Robertson HE, Borisenko KB, Rankin DWH (2005) (Dimethylaminomethyl)trifluorosilane, Me2NCH2SiF3—a model for the α-effect in aminomethylsilanes. Chem Eur J 11:5114–5125

    Article  CAS  Google Scholar 

  38. Hagemann M, Mix A, Berger RJF, Pape T, Mitzel NW (2008) Strong intramolecular Si-N interactions in the chlorosilanes Cl3-nHnSiOCH2CH2NMe2 (n = 1-3). Inorg Chem 47:10554–10564

    Article  CAS  Google Scholar 

  39. Hagemann M, Berger RJF, Hayes SA, Stammler HG, Mitzel NW (2008) N,N-Dimethylaminopropylsilane: a case study on the nature of weak intramolecular Si···N interactions. Chem Eur J 14:11027–11038

    Article  CAS  Google Scholar 

  40. Fluck E, Meiser P (1971) Preparation of tris(chloromethyl)amine, N(CH2Cl)3. Angew Chem Int Ed Engl 10:653

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  42. CP2K Developers’ Group (2015) CP2K v.3.0

  43. York Advanced Research Computing Cluster. http://www.york.ac.uk/it-services/services/yarcc/

  44. EPSRC National Service for Computational Chemistry Software. http://www.nsccs.ac.uk/

  45. Peverati R, Truhlar DG (2011) A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry. J Chem Phys 135:191102

    Article  Google Scholar 

  46. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  Google Scholar 

  47. Woon DE, Dunning Jr TH (1993) Gaussian basis sets for use in correlated molecular calculations III. The atoms aluminium through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  48. Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods for finding transition states. Israel J Chem 33:449–454

    Article  CAS  Google Scholar 

  49. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comp Chem 17:49–56

    Article  CAS  Google Scholar 

  50. Mitzel NW, Smart BA, Blake AJ, Robertson HE, Rankin DWH (1996) Conformational analysis of 1,4-disilabutane and 1, 5-disilapentane by combined application of gas-phase electron diffraction and ab initio calculations and the crystal structure of 1, 5-disilapentane at low temperatures. J Phys Chem A 100:9339–9347

    Article  CAS  Google Scholar 

  51. Blake AJ, Brain PT, McNab H, Miller J, Morrison CA, Parsons S, Rankin DWH, Robertson HE, Smart BA (1996) Structure analysis restrained by ab initio calculations: the molecular structure of 2, 5-dichloropyrimidine in gaseous and crystalline phases. J Phys Chem A 100:12280–12287

    Article  CAS  Google Scholar 

  52. Mitzel NW, Rankin DWH (2003) SARACEN—molecular structures from theory and experiment: the best of both worlds. Dalton Trans:3650–3662

  53. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  54. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  55. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

    Article  CAS  Google Scholar 

  56. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules solids and surfaces applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  57. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  58. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  59. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  CAS  Google Scholar 

  60. Wann DA, Less RJ, Rataboul F, McCaffrey PD, Reilly AM, Robertson HE, Lickiss PD, Rankin DWH (2008) Accurate gas-phase experimental structures of octasilsesquioxanes (Si8O12X8; X = H, Me). Organometallics 27:4183–4187

    Article  CAS  Google Scholar 

  61. Wann DA, Reilly AM, Rataboul F, Lickiss PD, Rankin DWH (2009) The gas-phase structure of the hexasilsesquioxane Si6O9(OSiMe3)6. Z Naturforsch 64:1269–1275

    Article  CAS  Google Scholar 

  62. Wann DA, Zakharov AV, Reilly AM, McCaffrey PD, Rankin DWH (2009) Experimental equilibrium structures: application of molecular dynamics simulations to vibrational corrections for gas electron diffraction. J Phys Chem A 113:9511–9520

    Article  CAS  Google Scholar 

  63. Wann DA, Dickson CN, Lickiss PD, Robertson HE, Rankin DWH (2011) The gas-phase equilibrium structures of Si8O12(OSiMe3)8 and Si8O12(CHCH2)8. Inorg Chem 50:2988–2994

    Article  CAS  Google Scholar 

  64. Huntley CM, Laurenson GS, Rankin DWH (1980) Gas-​phase molecular structure of bis(difluorophosphino)​amine, determined by electron diffraction. J Chem Soc Dalton Trans:954–957

  65. Fleischer H, Wann DA, Hinchley SL, Borisenko KR, Lewis JR, Mawhorter RJ, Robertson HE, Rankin DWH (2005) Molecular structures of Se(SCH3)2 and Te(SCH3)2 using gas-phase electron diffraction and ab initio and DFT geometry optimisations. Dalton Trans:3221–3228

  66. Hinchley SL, Robertson HE, Borisenko KR, Turner AR, Johnston BF, Rankin DWH, Ahmadian M, Jones JN, Cowley AH (2004) The molecular structure of tetra-tert-butyldiphosphine: an extremely distorted, sterically crowded molecule. Dalton Trans:2469–2476

  67. Ross AW, Fink M, Hilderbrandt R (1992) International tables for crystallography. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  68. Masters SL, Atkinson SJ, Hölbling M, Hassler K (2013) Gas-phase molecular structure of 1,1,1,2-tetrabromo-2,2-dimethyldisilane: theoretical and experimental investigation of a super-halogenated disilane and computational investigation of the F, Cl and I analogues. Struct Chem 24:1201–1206

    Article  CAS  Google Scholar 

  69. Møllendal H, Samdal S, Guillemin J (2011) Microwave spectrum, conformational composition and intermolecular hydrogen bonding of (2-chloroethyl)amine (ClCH2CH2NH2). J Phys Chem A 115:4334–4341

    Article  Google Scholar 

  70. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.D.R thanks João Pedro Nunes for useful discussions on data extraction and provision of the data extraction package xstract. We extend our thanks the staff at the York Advanced Research Computing Cluster (YARCC) and the UK National Service for Computational Chemistry Software (NSCCS) for the provision of computational resources.

Funding

D.A.W and C.D.R thank the EPSRC for funding the gas electron diffraction and theoretical research at the University of York, UK, for funding a fellowship for D.A.W. (EP/I004122), and for funding the studentship of C.D.R. S.J.A thanks the Department of Chemistry, University of Canterbury, NZ, for funding a studentship, and for the award of the inaugural Betty Wignall Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah L. Masters or Derek A. Wann.

Ethics declarations

No human or animal studies were conducted as part of this research.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

Supporting Information: Summary of parameters for the GED data collection (Table S1); the Cartesian coordinates and energies of A and B as optimized at the SOGGA11-X level (Tables S2–S4); the Cartesian coordinates and energies of TS A,B as optimized at the SOGGA11-X level (Tables S5–S7); summary of parameters for the GED data refinement (Table S8); least-squares correlation matrix for the GED data refinement (Table S9); the Cartesian coordinates and energies of A as optimized at the B3LYP (Tables S10–S12), B3P86 (Tables S13–S15), B3PW91 (Tables S16–S18) and wB97XD (Tables S19–S21) levels; the Cartesian coordinates and energies of methenamine as optimized at the SOGGA11-X level (Tables S22–S24); details of the molecular model used in the least-squares refinement procedure; refined parameters, and SARACEN restraints (Table S25); interatomic distances, GED-determined and theoretical amplitudes of vibration, and MD-derived distance corrections (Table S26); the refined GED structure of TCMA in Cartesian coordinates (Table S27). (DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rankine, C.D., Atkinson, S.J., Waterland, M.R. et al. The structure of tris(chloromethyl)amine in the gas phase using quantum chemical calculations and gas electron diffraction and as a solid and melt using Raman spectroscopy. Struct Chem 29, 803–813 (2018). https://doi.org/10.1007/s11224-018-1089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1089-1

Keywords

Navigation