Skip to main content
Log in

Gas-phase structures of dithietane derivatives, including an electron diffraction study of 1,3-dithietane 1,1,3,3-tetraoxide

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The gas electron diffraction structure of 1,3-dithietane 1,1,3,3-tetraoxide has been determined using the SARACEN method to restrain parameters that otherwise could not be refined. Quantum chemical calculations for this species showed that the potential-energy surface was extremely flat, and this was also observed from the diffraction experiments. The difference in goodness of fit for the diffraction experiment between a planar ring and one puckered by up to 9° was very small. Calculations were also performed for a variety of similar species with different numbers of oxygen atoms attached to the sulphur atoms. Topological analysis of the electron density, and electron localisation function studies of the relevant molecules, have given deeper insight into the nature of their bonding, and suggested how spatial localisation of electron pairs may influence the molecular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Contreras JG, Gerli LA, Hurtado SM, Madariaga ST (2004) J Chil Chem Soc 49:327

    Article  CAS  Google Scholar 

  2. Contreras JG, Madariaga ST (2001) Bioinorg Chem 29:57

    CAS  Google Scholar 

  3. Luh T-Y, Leung M-K (2006) Product subclass 2: 1,3-dithietanes. In Otera J (ed) Sci Synth 30:203

  4. Zoller U (1996) Four-membered rings with two sulfur atoms. In: Padwa A (ed) Comprehensive heterocyclic chemistry II, 1B. Pergamon, Oxford, p 1113

    Chapter  Google Scholar 

  5. Kalasinsky VF, Block E, Powers DE, Harris WC (1979) Appl Spectrosc 33:361

    Article  CAS  Google Scholar 

  6. Block E, Bazzi AA, Lambert JB, Wharry SM, Anderson KK, Dittmer DC, Patwardhan BH, Smith DJH (1980) J Org Chem 45:4807

    Article  CAS  Google Scholar 

  7. Block E, Bock H, Mohmand S, Rosmus P, Solouki B (1976) Angew Chem 88:380

    Article  CAS  Google Scholar 

  8. Block E, Penn RE, Olsen RJ, Sherwin PF (1976) J Am Chem Soc 98:1264

    Article  CAS  Google Scholar 

  9. Block E (2012) J Sulfur Chem. doi:10.1080/17415993.2012.717294

  10. Suzuki E, Ishiguro R, Watari F (1990) J Mol Struct 238:71

    Article  CAS  Google Scholar 

  11. Suzuki E, Yamazaki M, Shimizu K (2007) Vib Spectrosc 43:269

    Article  CAS  Google Scholar 

  12. Gusel’nikov LE, Avakyan VG, Guselnikov SL (2007) Heteroatom Chem 18:704

    Article  Google Scholar 

  13. Krantz KE, Senning A, Shim I (2010) J Mol Struct (Theochem) 944:83

    Article  CAS  Google Scholar 

  14. Vandeputte AG, Sabbe MK, Reyniers M-F, Marin GB (2011) Chem Eur J 17:7656

    Article  CAS  Google Scholar 

  15. Badawi HM, Foerner W, Al-Suwaiyan A–A (2008) J Mol Struct 875:189

    Article  CAS  Google Scholar 

  16. Block E, Corey ER, Penn RE, Renken TL, Sherwin PF, Bock H, Hirabayashi T, Mohmand S, Solouki B (1982) J Am Chem Soc 104:3119

    Article  CAS  Google Scholar 

  17. Contreras JG, Madariaga ST (1999) J Mol Struct (Theochem) 466:111

    Article  Google Scholar 

  18. Pigenet C, Jeminet G, Lumbroso H (1973) C R Acad Sci C 272:2023

    Google Scholar 

  19. Block E, Corey ER, Penn RE, Renken TL, Sherwin PF (1976) J Am Chem Soc 98:5715

    Article  CAS  Google Scholar 

  20. Smith Z, Seip R (1976) Acta Chem Scand A 30:759

    Article  Google Scholar 

  21. Chiang JF, Lu KC (1977) J Phys Chem 81:1682

    Article  CAS  Google Scholar 

  22. Mack H-G, Oberhammer H, Waterfeld A (1991) J Mol Struct 249:297

    Article  CAS  Google Scholar 

  23. Opitz G, Mohl HR (1969) Angew Chem Int Ed 8:73

    CAS  Google Scholar 

  24. Huntley CM, Laurenson GS, Rankin DWH (1980) J Chem Soc Dalton Trans 954

  25. Fleischer H, Wann DA, Hinchley SL, Borisenko KB, Lewis JR, Mawhorter RJ, Robertson HE, Rankin DWH (2005) Dalton Trans 3221

  26. Hinchley SL, Robertson HE, Borisenko KB, Turner AR, Johnston BF, Rankin DWH, Ahmadian M, Jones JN, Cowley AH (2004) Dalton Trans 2469

  27. Ross AW, Fink M, Hilderbrandt R (1992) International tables for crystallography. In: Wilson AJC (ed) International tables for crystallography, vol C. Kluwer Academic Publishers, Dordrecht, p 245

    Google Scholar 

  28. Gaussian 09, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc., Wallingford CT

  29. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  30. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  31. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  32. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  33. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  36. Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem 10:1

    Article  CAS  Google Scholar 

  37. Raghavachari K, Pople JA (1978) Int J Quantum Chem 14:91

    Article  Google Scholar 

  38. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  39. Sipachev VA (1985) J Mol Struct (Theochem) 121:143

    Article  Google Scholar 

  40. Sipachev VA (2001) J Mol Struct 567:67

    Article  Google Scholar 

  41. Bader RFW (1991) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  42. Bader RFW (1991) Chem Rev 91:893

    Article  CAS  Google Scholar 

  43. Bader RFW (1998) J Phys Chem A 102:7314

    Article  CAS  Google Scholar 

  44. Keith TA (2011) AIMAll (v11.03.14). TK Gristmill Software, Overland Park

  45. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  46. Silvi B, Savin A (1994) Nature 371:683

    Article  CAS  Google Scholar 

  47. Savin A, Nesper R, Wengert S, Fässler T (1997) Angew Chem Int Ed Engl 36:1808

    Article  CAS  Google Scholar 

  48. Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod, Paris

  49. Block E, Glass RS, DeOrazio R, Lichtenberger DL, Pollard JR, Russell EE, Schroeder TB, Thiruvazhi M, Toscano PJ (1997) Synlett 525

  50. Wilson GS, Swanson DD, Klug JT, Glass RS, Ryan MD, Musker WK (1979) J Am Chem Soc 101:1040

    Article  CAS  Google Scholar 

  51. Brain PT, Morrison CA, Parsons S, Rankin DWH (1996) J Chem Soc Dalton Trans 4589

  52. Blake AJ, Brain PT, McNab H, Miller J, Morrison CA, Parsons S, Rankin DWH, Robertson HE, Smart BA (1996) J Phys Chem 100:12280

    Article  CAS  Google Scholar 

  53. Mitzel NW, Rankin DWH (2003) Dalton Trans 3650

Download references

Acknowledgments

We thank the EPSRC for funding the electron diffraction research (EP/F037317 and EP/I004122). A.B. would like to thank the Wrocław Supercomputer and Networking Center for a grant of computer time, and the HPC-Europa2 project of the European Commission for funding a trip to Edinburgh that led to this collaboration. E.B. acknowledges support from the National Science Foundation (Grant CHE 0744578). The authors would like to acknowledge the use of the EPSRC UK National Service for Computational Chemistry Software (NSCCS) at Imperial College London in carrying out this work. This research also made use of resources provided by the Edinburgh Compute and Data Facility (http://www.ecdf.ed.ac.uk/), which is partially supported by the eDIKT initiative (http://www.edikt.org.uk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek A. Wann.

Additional information

Dedicated to Professor Aldo Domenicano on the occasion of his 75th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1637 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wann, D.A., Bil, A., Lane, P.D. et al. Gas-phase structures of dithietane derivatives, including an electron diffraction study of 1,3-dithietane 1,1,3,3-tetraoxide. Struct Chem 24, 827–835 (2013). https://doi.org/10.1007/s11224-012-0179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0179-8

Keywords

Navigation