Skip to main content
Log in

Thiamine supported on core–shell silica magnetic nanoparticles: a highly efficient and recyclable organocatalyst for the silylation of hydroxyl groups

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A green and highly efficient silylation of hydroxyl groups with hexamethyldisilazane using biodegradable thiamine-functionalized Fe3O4@SiO2 magnetic nanoparticles is described. The thiamine-functionalized silica-supported magnetic (Fe3O4@SiO2@VB1) nanocatalyst was characterized successfully by infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy, powder X-ray diffraction and thermogravimetric analysis. Thiamine hydrochloride as well as anchored thiamine on the surface of magnetic nanoparticles has a higher catalytic activity for the protection of alcohols and phenols under mild reaction condition and short reaction times. Furthermore, the nanocatalyst could be recovered using an external magnet and reused with almost consistent activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greene TW, Wuts PG (1991) Protection for the carbonyl group. Wiley Online Library, New York

    Google Scholar 

  2. Rappoport ZZ, Yitzhak A (2001) The chemistry of organic silicon compounds. Wiley, New York

    Book  Google Scholar 

  3. Colvin EW (1981) Silicon in organic synthesis. Krieger Publishing Company, Malabar

    Google Scholar 

  4. Pierce AE (1968) Silylation of organic compounds. Pierce Chemical Co., Rockford

    Google Scholar 

  5. Seitz DE, Ferreira L (1979) Synth Commun 9:451–456

    Article  CAS  Google Scholar 

  6. Morita T, Okamoto Y, Sakurai H (1980) Tetrahedron Lett 21:835–838

    Article  CAS  Google Scholar 

  7. Olah GA, Husain A, Gupta BB, Salem GF, Narang SC (1981) J Org Chem 46:5212–5214

    Article  CAS  Google Scholar 

  8. Azizi N, Yousefi R, Saidi MR (2006) J Organomet Chem 691:817–820

    Article  CAS  Google Scholar 

  9. Kadam ST, Kim SS (2010) Green Chem 12:94–98

    Article  CAS  Google Scholar 

  10. Yadav J, Reddy B, Basak A, Baishya G, Narsaiah A (2006) Synthesis 22:3831–3834

    Article  Google Scholar 

  11. Zhang ZH, Li TS, Yang F, Fu CG (1998) Synth Commun 28:3105–3114

    Article  CAS  Google Scholar 

  12. Seddighi M, Shirini F, Goli-Jolodar O (2016) RSC Adv 6:23564–23570

    Article  CAS  Google Scholar 

  13. Azizi N, Saidi MR (2003) Organometallics 23:1457–1458

    Article  Google Scholar 

  14. Kadam ST, Kim SS (2009) J Organomet Chem 694:2562–2566

    Article  CAS  Google Scholar 

  15. Rajagopal G, Lee H, Kim SS (2009) Tetrahedron 65:L4735–4741

    Article  Google Scholar 

  16. Jereb M (2012) Tetrahedron 68:3861–3867

    Article  CAS  Google Scholar 

  17. Romanelli G, Ruiz D, Vázquez P, Thomas H, Autino JC (2010) Chem Eng J 161:355–362

    Article  CAS  Google Scholar 

  18. Mormann W (2003) Cellulose 10:271–281

    Article  CAS  Google Scholar 

  19. Karimi B, Golshani B (2000) J Org Chem 65:7228

    Article  CAS  Google Scholar 

  20. Romanelli G, Vázquez P, Pizzio L, Blanco M, Cáceres C (2004) Appl Catal A 261:163–170

    Article  CAS  Google Scholar 

  21. Cámera R, Rimada R, Romanell G, Autino JC, Vázquez P (2008) Catal Today 133–135:822–827

    Article  Google Scholar 

  22. Curini M, Epifano F, Marcotullio MC, Rosati O (1999) Synth Commun 29:541–546

    Article  CAS  Google Scholar 

  23. Torki M, Tangestaninejad S, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I (2014) Appl Org Metal Chem 28:304–309

    Article  CAS  Google Scholar 

  24. Chakraborti AK, Chankeshwara SV (2009) J Org Chem 74:1367–1370

    Article  CAS  Google Scholar 

  25. Patschinski P, Zipse H (2015) Org Lett 17:3318–3321

    Article  CAS  Google Scholar 

  26. Patschinski P, Zhang C, Zipse H (2014) J Org Chem 79:8348–8357

    Article  CAS  Google Scholar 

  27. Simon MO, Li CJ (2012) Chem Soc Rev 41:1415–1427

    Article  CAS  Google Scholar 

  28. Dalko PI, Moisan L (2004) Angew Chem 116:5248–5286

    Article  Google Scholar 

  29. Shirini F, Daneshvar N (2016) RSC Adv 6:110190–110205

    Article  CAS  Google Scholar 

  30. Siddiqui IR, Rai P, Anushree Srivastava R, Srivastava A, Srivastava A (2013) New J Chem 37:3798–3804

    Article  CAS  Google Scholar 

  31. Li BL, Hu HC, Mo LP, Zhang ZH (2014) RSC Adv 4:12929–12943

    Article  CAS  Google Scholar 

  32. Gawande MB, Branco PS, Varma RS (2013) Chem Soc Rev 432:3371–3393

    Article  Google Scholar 

  33. Deng J, Mo LP, Zhao FY, Hou LL, Yang L, Zhang ZH (2011) Green Chem 13:2576–2584

    Article  CAS  Google Scholar 

  34. Baig RBN, Varma RS (2013) Chem Commun 49:752–770

    Article  CAS  Google Scholar 

  35. Kumar D, Kommi DN, Chopra P, Ansari MD, Chakraborti AK (2012) Eur J Org Chem 32:6407–6413

    Article  Google Scholar 

  36. Varma RS (2008) Green Chem 10:1129–1134

    Article  CAS  Google Scholar 

  37. Nongrum R, Singh Nongthombam G, Kharkongor M, Star Rani JW, Rahman N, Kathing C, Myrboh B, Nongkhlaw R (2016) RSC Adv 6:108384–108392

    Article  CAS  Google Scholar 

  38. Jyoti Kalita S, Chandra Deka D, Mecadon H (2016) RSC Adv 6:91320–91324

    Article  Google Scholar 

  39. Liu P, Hao JW, Mo LP, Zhang ZH (2015) RSC Adv 5:48675–48704

    Article  CAS  Google Scholar 

  40. Azizi N, Mirmashhori B, Saidi MR (2007) Catal Commun 8:2198–2203

    Article  CAS  Google Scholar 

  41. Gawande MB, Branco PS, Varma RS (2013) Chem Soc Rev 42:3371–3393

    Article  CAS  Google Scholar 

  42. Nazish M, Saravanan S, Khan NH, Kumari P, Kureshy RI, Abdi SHR, Bajaj HC (2014) ChemPlusChem 79:1753–1760

    CAS  Google Scholar 

  43. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM (2011) Chem Rev 111:3036–3063

    Article  CAS  Google Scholar 

  44. Azizi K, Heydari A (2014) RSC Adv 4:8812–8816

    Article  CAS  Google Scholar 

  45. Geetmani Singh N, Lily M, Premila Devi S, Rahman N, Ahmed A, Chandra A, Nongkhlaw R (2016) Green Chem 18:4216–4227

    Article  Google Scholar 

  46. Azizi N, Batebi E, Bagherpour S, Ghafuri H (2012) RSC Adv 2:2289–2293

    Article  CAS  Google Scholar 

  47. Azizi N, Gholibeglo E (2012) RSC Adv 2:7413–7416

    Article  CAS  Google Scholar 

  48. Mirmashhori B, Azizi N, Saidi MR (2006) J Mol Catal A: Chem 247:159–161

    Article  CAS  Google Scholar 

  49. Azizi N, Yadollahy Z, Rahimzadeh-Oskooee A (2014) Tetrahedron Lett 55:1722–1725

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work by the Chemistry and Chemical Engineering Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmedin Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, F., Abdoli-Senejani, M. & Azizi, N. Thiamine supported on core–shell silica magnetic nanoparticles: a highly efficient and recyclable organocatalyst for the silylation of hydroxyl groups . Reac Kinet Mech Cat 122, 193–203 (2017). https://doi.org/10.1007/s11144-017-1199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1199-6

Keywords

Navigation