Skip to main content

Advertisement

Log in

Nitrogen nutrition of beech forests in a changing climate: importance of plant-soil-microbe water, carbon, and nitrogen interactions

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

For 15+ years, a beech (Fagus sylvatica L.) dominated forest on calcareous soil was studied on two opposing slopes with contrasting microclimate in Tuttlingen, Swabian Alb, Germany. The cool-humid NE aspect of these slopes represents the majority of beech forests under current climate, the warmer and drier SW aspect represents beech forests under future climate conditions. The field studies were supplemented by investigations under controlled conditions.

Scope

The research program aimed to provide a comprehensive understanding of plant-soil-microbe water, carbon and nitrogen feedbacks in a changing climate and a holistic view of the sensitivity of beech to climate change.

Conclusions

The results of comparative and experimental studies underpin the high vulnerability of adult beech and its natural regeneration on calcareous soil to both direct climate change effects on plant physiology and indirect effects mediated by soil biogeochemical cycles. Mechanisms contributing to this vulnerability at the ecosystem and organismic level indicate a high significance of competitive interactions of beech with other vegetation components and soil microbial communities. Obvious forest management practices such as selective felling did not necessarily counteract negative effects of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez M, Huygens D, Olivares E, Saavedra I, Alberti M, Valenzuela E (2009) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activity. Physiol Plant 136:426–436

    Article  CAS  PubMed  Google Scholar 

  • Arend M, Sever K, Pflug E, Gessler A, Schaub M (2016) Seasonal photosynthetic response of European beech to severe summer drought: limitation, recovery and post-drought stimulation. Agric For Meteorol 220:83–89

    Article  Google Scholar 

  • Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57:287–301

    Article  Google Scholar 

  • Bakken LR, Bergaust L, Liu B, Frostegard A (2012) Regulation of denitrification at the cellular level: a clue to the understanding on N2O emissions from soils. Phil Trans R Soc B 367:1226–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauhus J, Barthel R (1995) Mechanisms for carbon and nutrient release and retention in beech forest gaps. 2. The role of soil microbial biomass. Plant Soil 169:585–592

    Article  Google Scholar 

  • Bauhus J, Bartsch N (1995) Mechanisms for carbon and nutrient release and retention in beech forest gaps. 1. Microclimate, water balance and seepage water chemistry. Plant Soil 169:579–584

    Article  Google Scholar 

  • Bauhus J, Vor T, Bartsch N, Cowling A (2004) The effects of gaps and liming on forest floor composition and soil C and N dynamics in a Fagus sylvatica forest. Can J For Res 34:509–518

    Article  Google Scholar 

  • Berendse F (1981) Competition between plants with different rooting depths. II. Pot experiments. Oecologia 48:334–341

    Article  PubMed  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhupinderpal-Singh NA, Lofvenius MO, Hogberg MN, Mellander PE, Hogberg P (2003) Tree root and soil heterotrophic respiration as revealed by of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296

    Article  CAS  Google Scholar 

  • Bilela S, Dounavi A, Fussi B, Konnert M, Holst J, Mayer H, Rennenberg H, Simon J (2012) Natural regeneration of Fagus sylvatica L. adapts with maturation to warmer and drier microclimatic conditions. For Ecol Manag 275:60–67

    Article  Google Scholar 

  • Bimüller C, Naumann PS, Buegger F, Dannenmann M, Zeller B, von Lützow M, Kögel-Knabner I (2013) Rapid transfer of 15N from labeled beech leaf litter to functional soil organic matter fractions in a Rendzic Leptosol. Soil Biol Biochem 58:323–331

    Article  CAS  Google Scholar 

  • Bimüller C, Dannenmann M, Tejedor J, von Lützow M, Buegger F, Meier R, Haug S, Schroll R, Kögel-Knabner I (2014) Prolonged summer droughts retard soil N processing and stabilization in organo-mineral fractions. Soil Biol Biochem 68:241–251

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Dannenmann M, Gasche R, Butterbach-Bahl K (2010) Fungal-to-bacterial ratio and N2O emission during rewetting in the forest floor and mineral soil of beech forests of different management practice and microclimate. Biogeochemistry 97:55–70

    Article  CAS  Google Scholar 

  • Bledsoe C, Brown D, Coleman M, Littke W, Rygiewicz P, Sangwanit U, Rogers S, Ammirati J (1989) Physiology and metabolism of ectomycorrhizae. Ann For Sci 46:697s–705s. doi:10.1051/forest:198905ART0154

    Article  Google Scholar 

  • Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S (2013) Space can substitute for time in predicting climate-change effects on biodiversity. Proc Natl Acad Sci U S A 110:9374–9379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom AJ, Caldwell RM, Finazzo J, Warner RL, Weissbart J (1989) Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol 91:352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom AJ, Sukrapanna SS, Warner RL (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol 99:1294–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukcim H, Plassard C (2003) Juvenile nitrogen uptake capacities and root architecture of two open-pollinated families of Picea abies. Effects of nitrogen source and ectomycorrhizal symbiosis. J Plant Physiol 160:1211–1218

    Article  CAS  PubMed  Google Scholar 

  • Briggs RD, Hornbeck JW, Smith CT, Lemin RC, McCormack ML (2000) Long-term effects of forest management on nutrient cycling in spruce-fir forests. For Ecol Manag 138:285–299

    Article  Google Scholar 

  • Brumme R (1995) Mechanisms of carbon and nutrient release and retention in beech forest gaps. 3. Environmental regulation of soil respiration and nitrous oxide emissions along a microclimatic gradient. Plant Soil 169:593–600

    Article  Google Scholar 

  • Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:547

    Article  PubMed  PubMed Central  Google Scholar 

  • Butterbach-Bahl K, Dannenmann M (2012) Soil carbon and nitrogen interactions and biosphere-atmosphere exchange of methane and nitrous oxide. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J (eds) Recarbonization of the biosphere – ecosystems and the global carbon cycle. Springer, Dordrecht, pp 429–443

    Chapter  Google Scholar 

  • Butterbach-Bahl K, Gasche R, Breuer L, Papen H (1997) Fluxes of NO and N2O from temperate forest soils: impact on forest type, N-deposition and of liming on NO and N2O emissions. Nutr Cycl Agroecosyst 48:79–90

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils, how well do we understand the processes and their controls. Philos Trans R Soc B Biol Sci 368:1621

    Article  CAS  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  PubMed  Google Scholar 

  • Cavender-Bares J, Bazzaz FA (2000) Changes in drouht response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124:8–18

    Article  CAS  PubMed  Google Scholar 

  • Charru M, Seynave I, Hervé J-C, Bertrand R, Bontemps J-D (2017) Recent growth changes in Western European forests are driven by climatic warming and structured across tree species climatic habitats. Ann For Sci. doi:10.1007/s13595-017-0626-1

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Migletta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Sousana JF, Sanz MJ, Schulze ED, Vesala T, Valentine R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, von Fischer JS, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biochem Cycl 13:6223–6645

    Google Scholar 

  • Corrêa A, Strasser RJ, Martins-Loução MA (2008) Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation? Mycorrhiza 18:413–427

    Article  PubMed  Google Scholar 

  • Coté B, Fyles JW, Djalilvand H (2002) Increasing N and P resorption efficiency and profiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Ann For Sci 59:275–281

    Article  Google Scholar 

  • Cotrufo MF, Miller M, Zeller B (2000) Litter decomposition. In: Schulze ED (ed) Carbon and nitrogen cycling in European Forest Ecosystems. Springer, Heidelberg, pp 276–296

    Chapter  Google Scholar 

  • Coumou D, Robinson A, Rahmstorf S (2013) Global increase in record-breaking monthly mean temperatures. Clim Chang 118:771–782

    Article  Google Scholar 

  • Dannenmann M, Gasche R, Ledebuhr A, Papen H (2006) Effects of forest management on soil N cycling in beech forests stocking on calcareous soils. Plant Soil 287:279–300

    Article  CAS  Google Scholar 

  • Dannenmann M, Gasche R, Papen H (2007a) Nitrogen turnover and N2O production in the forest floor of beech stands as influenced by forest management. J Plant Nutr Soil Sci 170:134–144

    Article  CAS  Google Scholar 

  • Dannenmann M, Gasche R, Ledebuhr A, Holst T, Mayer H, Papen H (2007b) The effect of forest management on trace gas exchange at the pedosphere-atmosphere interface in beech (Fagus sylvatica L.) forests stocking on calcareous soils. Eur J For Res 126:331–346

    Article  CAS  Google Scholar 

  • Dannenmann M, Butterbach-Bahl K, Gasche R, Willibald S, Papen H (2008) Dinitrogen emissions and the N2:N2O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. Soil Biol Biochem 40:2317–2323

    Article  CAS  Google Scholar 

  • Dannenmann M, Simon J, Gasche R, Holst J, Pena R, Naumann PS, Kögel-Knabner I, Knicker H, Mayer H, Schloter M, Polle A, Rennenberg H, Papen H (2009) Tree girdling provides insight on the role of labile carbon in nitrogen partitioning between soil microorganisms and adult European beech. Soil Biol Biochem 41:1622–1631

    Article  CAS  Google Scholar 

  • Dannenmann M, Bimüller C, Gschwendtner S, Leberecht M, Tejedor J, Bilela S, Gasche R, Hanewinkel M, Baltensweiler A, Kögel-Knabner I, Polle A, Schloter M, Simon J, Rennenberg H (2016) Climate change impairs nitrogen cycling in European Beech forests. PLoS One 11(7):e0158823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosyst 48:37–50

    Article  CAS  Google Scholar 

  • De Mazancourt C, Loreau M, Dieckmann U (2005) Understanding mutualism when there is adaptation to the partner. J Ecol 93:305–314

    Article  Google Scholar 

  • De Vries W, Kros J, Kroeze C, Seitzinger SP (2013) Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr Opin Environ Sustain 5:392–402

    Article  Google Scholar 

  • Del Rio M, Schütze G, Pretzsch H (2014) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16:166–176

    Article  CAS  PubMed  Google Scholar 

  • Diaconu D, Wassenberg M, Spiecker H (2016) Variability of European beech wood density as influenced by interactions between tree-ring growth and aspect. For Ecosyst 3:6

    Article  Google Scholar 

  • Dong F, Simon J, Rienks M, Lindermayr C, Rennenberg H (2015) Effects of rhizospheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on CO2 concentration, soil N availability, and N source. Tree Physiol 35:910–920

    Article  PubMed  Google Scholar 

  • Dong F, Simon J, Rienks M, Schäffer J, von Wilpert K, Rennenberg H (2016) Environmental effects on soil NO concentration and root N uptake in beech and spruce forests. J Plant Nutr Soil Sci 179:244–256

    Article  CAS  Google Scholar 

  • Druebert C, Lang C, Valtanen K, Polle A (2009) Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant Cell Environ 32:992–1003

    Article  CAS  PubMed  Google Scholar 

  • Ellenberg H 1996 Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart, Germany, 5th edition

  • Ellenberg H, Leuschner C (2014) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Ulmer Verlag, Stuttgart, p 1333

    Google Scholar 

  • Falk W, Hempelmann N 2013 Species favourability shift in Europe due to climate change: a case study for Fagus sylvatica L. and Picea abies (L.) Karst. Based on an ensamble of climate models. J Climatol vol. 2013, ID 787250

  • Feldmann H, Schädler G, Panitz HJ, Kottmeier C (2013) Near future changes of mean and extreme precipitation derived from an ensemble of high-resolution RCM simulations. Int J Climatol 33:1964–1977

    Article  Google Scholar 

  • Felten J, Kohler A, Morin M, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legue V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotelli M, Gessler A, Peuke AD, Rennenberg H (2001) Drought effects the competitive interaction between Fagus sylvatica seedlings and an early successional species (Rubus fruticosus): responses of growth, water status, and δ13C composition. New Phytol 151:427–436

    Article  CAS  Google Scholar 

  • Fotelli MN, Nahm M, Heidenfelder A, Papen H, Rennenberg H, Gessler A (2002a) Soluble nonprotein nitrogen compounds indicate changes in the nitrogen status of beech seedlings due to climate and thinning. New Phytol 154:85–97

    Article  CAS  Google Scholar 

  • Fotelli MN, Rennenberg H, Gessler A (2002b) Effects of drought on the competitive interference of an early successional species (Rubus fruticosus) on Fagus sylvatica L. seedlings: 15N uptake and partitioning, responses of amino acids and other N compounds. Plant Biol 4:311–320

    Article  CAS  Google Scholar 

  • Fotelli MN, Rennenberg H, Holst T, Mayer H, Gessler A (2003) Carbon isotope composition of various tissues of beech (Fagus sylvatica L.) regeneration is indicative of recent environmental conditions within the forest understorey. New Phytol 159:229–244

    Article  CAS  Google Scholar 

  • Fotelli MN, Rienks M, Rennenberg H, Gessler A (2004) Climate and forest management affect 15N-uptake, N balance and biomass of European beech seedlings. Trees 18:157–166

    Article  Google Scholar 

  • Fotelli MN, Rudolf P, Rennenberg H, Gessler A (2005) Irradiance and temperature affect the competitive interference of blackberry on the physiology of European beech seedlings. New Phytol 165:453–462

    Article  PubMed  Google Scholar 

  • Frei C 2004 Klimazukunft der Schweiz – Eine probabilistische Projektion. Eidgenössische Technische Hochschule (Zürich), Institut für Atmosphäre und Klima. MeteoSchweiz, Zürich.

  • Gärdenäs A, Agren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions – from molecular to global scale. Soil Biol Biochem 43:702–717

    Article  CAS  Google Scholar 

  • Gessler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams M (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica L.) New Phytol 150:653–664

    Article  Google Scholar 

  • Gessler A, Keitel C, Nahm M, Rennenberg H (2004) Water shortage affects the water and nitrogen balance in central European beech forests. Plant Biol 6:289–298

    Article  CAS  PubMed  Google Scholar 

  • Gessler A, Jung K, Gasche R, Papen H, Heidenfelder A, Börner E, Metzler B, Augustin S, Hildebrand E, Rennenberg H (2005) Climate and forest management influence nitrogen balance of European beech forests: microbial N transformation and inorganic N uptake capacity of micorrhizal roots. Eur J For Res 124:95–111

    Article  CAS  Google Scholar 

  • Gessler A, Schaub M, McDowell N (2016) Tansley insight: the role of nutrients in drought-induced tree mortality and recovery. New Phytol. doi:10.1111/nph.14340

  • Giuggiola A, Ogée J, Rigling A, Gessler A, Bugmann H, Treydte K (2015) Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach. New Phytol 210:108–121

    Article  PubMed  CAS  Google Scholar 

  • Grayston SJ, Rennenberg H (2006) Assessing effects of forest management on microbial community structure in a European beech forest. Can J For Res 36:2595–2604

    Article  Google Scholar 

  • Gschwendtner S, Leberecht M, Engel M, Kublike S, Dannenmann M, Polle A, Schloter M (2015) Effects of elevated atmospheric CO2 on microbial community structure at the plant-soil interface of young beech trees (Fagus sylvatica L.) grown at two sites with contrasting climatic conditions. Microbial Ecol 69:867–878

    Article  Google Scholar 

  • Guo C, Simon J, Gasche R, Naumann PS, Bimüller C, Pena R, Polle A, Kögel-Knabner I, Zeller B, Rennenberg H, Dannenmann M (2013a) Minor contribution of leaf litter to N nutrition of beech (Fagus sylvatica) seedlings in a mountainous beech forest of southern Germany. Plant Soil 369:657–668

    Article  CAS  Google Scholar 

  • Guo C, Dannenmann M, Gasche R, Zeller B, Papen H, Polle A, Rennenberg H, Simon J (2013b) Preferential use of root litter compared to leaf litter by beech seedlings and soil microorganisms. Plant Soil 368:519–534

    Article  CAS  Google Scholar 

  • Hagedorn F, Joseph J, Peter M, Luster J, Pritsch K, Geppert U, Kerner R, Molinier V, Egli S, Schaub M, Liu J-F, Li M, Sever K, Weiler M, Siegwolf R, Gessler A, Arend M (2016) Recovery of trees from drought depends on belowground sink control. Nat Plants 2:16111

    Article  PubMed  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207

    Article  Google Scholar 

  • Hasselquist NJ, Metcalfe DB, Inselsbacher E, Stangl S, Oren R, Näsholm T, Högberg P (2016) Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology. doi:10.1890/15-1222

  • Helmisaari H-S, Ostonen I, Lõhmus K, Derome J, Lindroos A-J, Merilä P, Nöjd P (2009) Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Tree Physiol 29:445–456

    Article  CAS  PubMed  Google Scholar 

  • Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD (2016) Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest. New Phytol 209:1693–1704

    Article  CAS  PubMed  Google Scholar 

  • Hentschel R, Hommel R, Poschenrieder W, Grote R, Holst J, Biernath C, Gessler A, Priesack E (2016) Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech. Trees Struct Funct 30:153–174

    Article  Google Scholar 

  • Hodge A, Fitter AH (2013) Microbial mediation of plant competition and community structure. Funct Ecol 27:865–875

    Article  Google Scholar 

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  PubMed  Google Scholar 

  • Högberg P (1989) Growth and nitrogen inflow rates in mycorrhizal and nonmycorrhizal seedlings of Pinus sylvestris. For Ecol Manag 28:7–17

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Holst T, Mayer H, Schindler D (2004) Microclimate within beech stands - part II: thermal conditions. Eur J For Res 123:13–28

    Article  Google Scholar 

  • Holst J, Grote R, Offermann C, Ferrio JP, Gessler A, Mayer H, Rennenberg H (2010) Water fluxes within beech stands in complex terrain. Int J Biometeorol 54:23–36

    Article  PubMed  Google Scholar 

  • Hommel R, Siegwolf R, Zavadlav S, Arend M, Schaub M, Galiano L, Haeni M, Kayler ZE, Gessler A (2016) Impact of interspecific competition and drought on the allocation of new assimilates in trees. Plant Biol 18:785–796

    Article  CAS  PubMed  Google Scholar 

  • Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Ann Rev Plant Physiol Plant Mol Biol 45:577–607

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007 - the physical Science basis. In: Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Millar HL (eds) Contribution of Working Group I to the forth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate change 2013 - the physical Science basis. In: Stocker D, Qin TF, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 159–254

    Google Scholar 

  • Javelle A, Chalot M, Söderström B, Botton B (1999) Ammonium and methylamine transport by the ectomyccorhizal fungus Paxillus involutus and ectomycorrhizas. FEMS Microbiol Ecol 30:355–366

    Article  CAS  PubMed  Google Scholar 

  • Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2009) Quantitative analysis of soluble exudates produced by ectomyccorhizal roots as a response to ambient and elevated CO2. Soil Biol Biochem 41:1111–1116

    Article  CAS  Google Scholar 

  • Johnson NC, Graham J-H, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109

    Article  Google Scholar 

  • Kaiser C, Kilburn MR, Claude PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551

    Article  CAS  PubMed  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and microorganisms. Trends Ecol Evol 12:139–143

    Article  CAS  PubMed  Google Scholar 

  • Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Gessler A (2003) Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-time measure for stomatal conductance of European beech (Fagus sylvatica). Plant Cell Environ 26:1157–1168

    Article  CAS  Google Scholar 

  • Kitzler B, Zechmeister-Boltenstern S, Holtermann C, Skiba U, Butterbach-Bahl K (2006) Nitrogen oxides emission from two beech forests subjected to different nitrogen loads. Biogeosciences 3:293–310

    Article  CAS  Google Scholar 

  • Kramer K, Degen B, Buschbom J, Hickler T, Thuller W, Sykes MT, de Winter T (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change – range, abundance, genetic diversity and adaptive response. For Ecol Manag 259:2213–2222

    Article  Google Scholar 

  • Kreutzer K, Butterbach-Bahl K, Rennenberg H, Papen H (2009) The complete nitrogen cycle in a N-saturated spruce forest ecosystem. Plant Biol 11:643–649

    Article  CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925

    Article  CAS  Google Scholar 

  • Lankau RA, Wheeler E, Bennett AE, Strauss SY (2011) Plant-soil feedbacks contribute to an intransitive competitive network that promotes both genetic and species diversity. J Ecol 99:176–185

    Article  Google Scholar 

  • Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, Arndal MF, Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, van der Linden L, Maraldo K, Michelsen A, Mikkelsen TN, Pilegaard K, Prieme A, Ro-Poulsen H, Schmidt IK, Selsted MB, Stevnbak K (2011) Reduced N cycling in response to elevated CO2, warming and drought in a Danish heathland: synthesizing results of the CLIMATE project after two years of treatments. Glob Change Biol 17:1884–1899

    Article  Google Scholar 

  • Leberecht M, Dannenmann M, Gschwendtner S, Bilela S, Meier R, Simon J, Rennenberg H, Schloter M, Polle A (2015) Ectomycorrhizal communities on the roots of two beech (Fagus sylvatica) populations from contrasting climate differ in nitrogen acquisition in a common environment. Appl Environ Microbiol 81:5957–5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leberecht M, Dannenmann M, Tejedor J, Simon J, Rennenberg H, Polle A (2016) Segragation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees. Plant Cell Environ. doi:10.1111/pce.12820

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. Trees in dry and wet years. For Ecol Manag 149:33–46

    Article  Google Scholar 

  • Levesque M, Walthert L, Weber P (2016) Soil nutrients influence growth response of temperate tree species to drought. J Ecol 104:377–387

    Article  Google Scholar 

  • Li X, Rennenberg H, Simon J (2015) Competition for nitrogen between Fagus sylvatica and Acer pseudoplatanus seedlings depends on soil nitrogen availability. Frontiers Plant Sci 6:302

    Google Scholar 

  • Li X, Rennenberg H, Simon J (2016a) Seasonal variation in N uptake strategies in the understory of a N-limited, beech dominated forest ecosystem depends on N source and species. Tree Physiol 36:589–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Yang Q, Zhang W, Zheng W, Chi Y, Xu M, Fang Y, Gessler A, Li M-H, Wang S (2016b) Thinning effect on photosynthesis depends on needle ages in a Chinese fir (Cunninghamia lanceolata) plantation. Sci Total Environ. doi:10.1016/j.scitotenv.2016.12.036

  • Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205

    Article  Google Scholar 

  • Markensteijn L, Poorter L, Paz H, Sack L, Bongers F (2011) Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environm 34:137–148

    Article  Google Scholar 

  • Marschner H 1995 Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

  • McDowell NG, Sevanto S (2010) The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol 186:264–266

    Article  PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532

    Article  PubMed  Google Scholar 

  • Medhurst JL, Beadle CL (2005) Photosynthetic capacity and foliar nitrogen distribution in Eucalyptus nitens is altered by high-intensity thinning. Tree Physiol 25:981–991

    Article  CAS  PubMed  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2014) Water footprint benchmarks for crop production: a first global assessment. Ecol Indic 45:214–223

    Article  Google Scholar 

  • Millard P, Grelet GA (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Nahm M, Holst T, Matzarakis A, Mayer H, Rennenberg H, Gessler A (2006) Soluble N compound profiles and concentrations in European beech (Fagus sylvatica L.) are influenced by local climate and thinning. Eur J For Res 125:1–14

    Article  CAS  Google Scholar 

  • Nahm M, Matzarakis A, Rennenberg H, Geßler A (2007) Seasonal courses of key parameters of nitrogen, carbon and water balance of European beech (Fagus sylvatica L.) grown on four different study sites along a European north-south climate gradient during the 2003 drought. Trees 21:79–92

    Article  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  CAS  Google Scholar 

  • Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198:214–221

    Article  PubMed  CAS  Google Scholar 

  • Offermann C, Ferrio JP, Holst J, Grote R, Siegwolf R, Kayler Z, Gessler A (2011) The long way down--are carbon and oxygen isotope signals in the tree ring uncoupled from canopy physiological processes? Tree Physiol 31:1088–1102

    Article  CAS  PubMed  Google Scholar 

  • Palacio S, Hoch GU, Sala A, Korner C, Millard P (2014) Does carbon storage limit tree growth? New Phytol 201:1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Paul T 1998 Nutzungsgeschichte. In: Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen. Vorcharakterisierung der Untersuchungsflächen. Antrag auf Finanzierung eines Sonderforschungsbereichs, Universität Freiburg.

  • Pena R (2016) Nitrogen acquisition in ectomycorrhizal symbiosis. In: Martin F (ed) Molecular mycorrhizal symbiosis. John Wiley & sons, New York, pp 179–196

    Chapter  Google Scholar 

  • Pena R, Polle A (2014) Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME J 8:321–330

    Article  CAS  PubMed  Google Scholar 

  • Pena R, Offermann C, Simon J, Naumann PS, Gessler A, Holst J, Dannenmann M, Mayer H, Kögel-Knabner I, Rennenberg H, Polle A (2010) Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Appl Environ Microbiol 76:1831–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena R, Simon J, Rennenberg H, Polle A (2013a) Ectomycorrhiza affect architecture and nitrogen partitioning of beech (Fagus sylvatica L.) seedlings under shade and drought. Environ Exp Bot 87:207–217

    Article  Google Scholar 

  • Pena R, Tejedor J, Zeller B, Dannenmann M, Polle A (2013b) Interspecific temporal and spatial differences in the acquisition of litter-derived nitrogen by ectomycorrhizal fungal assemblages. New Phytol 199:520–528

    Article  CAS  PubMed  Google Scholar 

  • Pfautsch S, Rennenberg H, Bell TL, Adams MA (2009) Nitrogen uptake by Eucalyptus regnans and Acacia spp. - preferences, resource overlap and energetic costs. Tree Physiol 29:389–399

    Article  CAS  PubMed  Google Scholar 

  • Pretzsch H, Rötzer T, Matyssek R, Grams TEE, Häberle KH, Pritsch K, Kerner R, Munch JC (2014) Mixed Norway spruce (Picea abies (L.) Karst) and European beech (Fagus sylvatica (L.)) stands under drought: from reaction pattern to mechanism. Trees Struct Funct 28:1305–1321

    Article  CAS  Google Scholar 

  • Rasztovits E, Berki I, Mátyás C, Czimber K, Pötzelsberger E, Móricz N (2014) The incorporation of extreme drought events improves models for beech persistence at its distribution limit. Ann For Sci 71:201–210

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Rennenberg H, Dannenmann M (2015) Nitrogen nutrition of trees and temperate forests – the significance of nitrogen availability in pedosphere and atmosphere. Forests 6:2820–2835

    Article  Google Scholar 

  • Rennenberg H, Seiler W, Matyssek R, Gessler A, Kreuzwieser J (2004) Die Buche (Fagus sylvatica L.) – ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? Allg. Forst Jagdzeit 175:210–224

    Google Scholar 

  • Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A (2006) Physiological responses of forest trees to heat and drought. Plant Biol 8:556–571

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser J, Simon J, Papen H (2009) Nitrogen balance in forests: nutritional limitation of plants under climate change stresses. Plant Biol 11(Suppl):4–23

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP, Groffman PM (2005) Nitrogen transformations. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 3rd edn. Academic Press, Oxford, pp 341–387

    Google Scholar 

  • Rosegrant MW, Ringler C, Zhu T (2009) Water for agriculture: maintaining food security under growing scarcity. Ann Rev Environ Res 34:205–222

    Article  Google Scholar 

  • Ruehr NK, Offermann CA, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard RL (2009) Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol 184:950–961

    Article  CAS  PubMed  Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739

    Article  Google Scholar 

  • Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: are plants territorial? Adv Ecol Res 28:145–180

    Article  CAS  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Simard SW, Jones MD, Durall DM (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. In: Mycorrhizal ecology. Springer, Heidelberg Berlin, pp 33–74

    Chapter  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Simon S, Stoelken G, Rienks M, Rennenberg H (2009) Rhizospheric NO interacts with the acquisition of reduced nitrogen sources by the roots of European beech (Fagus sylvatica). FEBS Lett 583:2907–2910

    Article  CAS  PubMed  Google Scholar 

  • Simon J, Waldhecker P, Brüggemann N, Rennenberg H (2010) Competition for nitrogen sources between European beech (Fagus sylvatica) and sycamore maple (Acer pseudoplatanus) seedlings. Plant Biol 12:453–458

    Article  CAS  PubMed  Google Scholar 

  • Simon J, Dannenmann M, Gasche R, Holst J, Mayer H, Papen H, Rennenberg H (2011) Competition for nitrogen between adult European beech and its offspring is reduced by avoidance strategy. For Ecol Manag 262:105–114

    Article  Google Scholar 

  • Simon J, Dong F, Buegger F, Rennenberg H (2013) Rhizospheric NO affects N uptake and metabolism in Scots pine (Pinus sylvestris L.) seedlings depending on soil N availability and N sources. Plant Cell Environ 36:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Simon J, Li X, Rennenberg H (2014) Competition for nitrogen between European beech and sycamore maple shifts in favour of beech with decreasing light availability. Tree Physiol 34:49–60

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Stoelken G, Simon J, Ehlting B, Rennenberg H (2010) The presence of amino acids affects inorganic N uptake in non-mycorrhizal seedlings of European beech (Fagus sylvatica L.) Tree Physiol 30:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Strzepek K, Boehlert B (2010) Competition for water for the food system. Philos Trans R Soc B 365:2927–2940

    Article  Google Scholar 

  • Sun Z, Liu L, Peng S, Penuelas J, Zeng H, Piao S (2016) Age-related modulation of the nitrogen resorption efficiency response to growth requirements and soil nitrogen availability in a temperate pine plantation. Ecosystems 19:698–709

    Article  CAS  Google Scholar 

  • Tarp P, Helles F, Holten-Andersen P, Larsen JB, Strange N (2000) Modelling near-natural silvicultural regimes of beech – an economic sensitivity analysis. For Ecol Manag 130:187–198

    Article  Google Scholar 

  • Tegel W, Seim A, Hakelberg D, Hoffmann S, Panev M, Westphal T, Büntgen U (2014) A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur J For Res 133:61–71

    Article  Google Scholar 

  • Tejedor J, Saiz G, Rennenberg H, Dannenmann M (2017) Thinning of beech forests stocking on shallow calcareous soil maintains soil C and N stocks in the long run. Forests 8(5)167. doi:10.3390/f8050167

  • Trinder CJ, Brooker RW, Robinson D (2013) Plant ecology’s guilty little secret: understanding the dynamics of plant competition. Funct Ecol 27:918–929

    Article  Google Scholar 

  • Valtanen K, Eissfeller V, Beyer F, Hertel D, Scheu S, Polle A (2014) Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza 24:645–650

    Article  CAS  PubMed  Google Scholar 

  • van Bel A (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Article  Google Scholar 

  • van der Heijden EW, Kuyper TW (2003) Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement. Oikos 103:668–680

    Article  Google Scholar 

  • van Groeningen JW, Huygens D, Boeckx P, Kuyper TW, Lubbers IM, Rütting T, Groffman PM (2015) The soil N cycle: new insights and key challenges. Soil 1:235–256

    Article  Google Scholar 

  • von Felten S, Niklaus PA, Scherer-Lorenzen M, Hector A, Buchmann N (2012) Do grassland plant communities profit from N partitioning by soil depth? Ecology 93:2386–2396

    Article  Google Scholar 

  • von Rein I, Gessler A, Premke K, Keitel C, Ulrich A, Kayler ZE (2016) Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum. Glob Chang Biol 22:2861–2874

    Article  Google Scholar 

  • Wagner S, Berg P, Schädler G, Kunstmann H (2013) High resolution regional climate model simulations for Germany: part II – projected climate changes. Clim Dyn 40:415–427

    Article  Google Scholar 

  • Wang YP, Houlton BZ (2009) Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback. Geophys Res Lett 36:L24403. doi:10.1029/2009gl041009

    Article  CAS  Google Scholar 

  • Weemstra M, Eilmann B, Sass-Klaassen UGW, Sterck FJ (2013) Summer droughts limit tree growth across 10 temperate species on a productive forest site. For Ecol Manag 306:142–149

    Article  Google Scholar 

  • Deutscher Wetterdienst 2015 Witterungsreport Deutschland: Sommer 2015, http://www.dwd.de/DE/leistungen/klimakartendeutschland/klimakartendeutschland_monatsbericht.html?nn=495662 (accessed: 22/07/2016)

  • Winkler JB, Dannenmann M, Simon J, Pena R, Offermann C, Sternad W, Clemenz C, Naumann PS, Gasche R, Kögel-Knabner I, Gessler A, Rennenberg H, Polle A (2010) Carbon and nitrogen balance in beech roots under competitive pressure of soil-borne microorganisms induced by girdling, drought and glucose application. Funct Plant Biol 37:879–889

    Article  CAS  Google Scholar 

  • WRB 2007 World reference base for soil resources 2006, first update 2007. International Union of Soil Sciences Working Group WRB.

  • Zaehle S (2013) Terrestrial nitrogen-carbon cycle interactions at the global scale. Philos Trans R Soc B:368–20130125

  • Zimmermann J, Hauck M, Dulamsuren C, Leuschner C (2015) Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central European mixed forests. Ecosystems 18:560–672

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research summarized in this review was funded by the Deutsche Forschungsgemeinschaft within SFB 433, FOR 788, and PAK 538, as well as contract numbers GE 1090/8-1, GE 1090/9-1, and PE 2256/1-1 and by the Swiss National Science Foundation SNF (31003A_159866). We thank the Stadt Tuttlingen, the Gemeinde Möhringen and the State Forest Services Baden-Württemberg for their continuous support of the studies at the Tuttlingen field site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy Simon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Philippe Hinsinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, J., Dannenmann, M., Pena, R. et al. Nitrogen nutrition of beech forests in a changing climate: importance of plant-soil-microbe water, carbon, and nitrogen interactions. Plant Soil 418, 89–114 (2017). https://doi.org/10.1007/s11104-017-3293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3293-y

Keywords

Navigation