Skip to main content

Advertisement

Log in

Competence of an artificial bent DNA as a transcriptional activator in mouse ES cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Curved DNA structures with a left-handed superhelical conformation can activate eukaryotic transcription. However, their potency in transgene activation in embryonic stem (ES) cells has not been examined. T20 is an artificial curved DNA of 180 bp that serves as a transcriptional activator. We investigated the effect of T20 on transcription in mouse ES cell lines or hepatocytes differentiated from them. We established 10 sets of cell lines each harboring a single copy of the reporter construct. Each set comprised a T20-harboring cell line and a T20-less control cell line. Analyses showed that in ES cells and in hepatocytes originating from these cells, T20 both activated and repressed transcription in a manner that was dependent on the locus of reporter. The present and previous studies strongly suggest that in cells that have a strict gene regulation system, transcriptional activation by T20 occurs only in a transcriptionally active locus in the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Alb :

Albumin gene

Alox5ap :

Arachidonate 5-lipoxygenase-activating protein gene

Cdk3 :

Cyclin-dependent kinase 3 gene

ChIP:

Chromatin immunoprecipitation

CK18:

Cytokeratin 18

CYC1 :

Iso-1-cytochrome c gene

Cyp7α1 :

Cholesterol 7 alpha hydroxylase gene

ES:

Embryonic stem

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GFP:

Green fluorescent protein

HSV:

Herpes simplex virus

IPCR:

Inverse polymerase chain reaction

Neo r :

Neomycin phosphotransferase gene

Oct4 :

POU domain, class 5, transcription factor 1 gene

PEPCK :

Phosphoenolpyruvate carboxykinase 1 gene

Rps18 :

Ribosomal protein S18 gene

RT-PCR:

Reverse transcription polymerase chain reaction

TAT :

Tyrosine aminotransferase gene

Tgfbr3 :

Transforming growth factor β receptor III gene

tk :

Thymidine kinase gene

UAS:

Upstream activating sequence

References

  1. Hagerman PJ (1990) Sequence-directed curvature of DNA. Annu Rev Biochem 59:755–781

    Article  CAS  PubMed  Google Scholar 

  2. Miyano M, Kawashima T, Ohyama T (2001) A common feature shared by bent DNA structures locating in the eukaryotic promoter region. Mol Biol Rep 28:53–61

    Article  CAS  PubMed  Google Scholar 

  3. Ohyama T (2001) Intrinsic DNA bends: an organizer of local chromatin structure for transcription. Bioessays 23:708–715

    Article  CAS  PubMed  Google Scholar 

  4. Asayama M, Ohyama T (2005) Curved DNA and prokaryotic promoters: a mechanism for activation of transcription. In: Ohyama T (ed) DNA conformation and transcription. Springer, New York, pp 37–51

    Chapter  Google Scholar 

  5. Ohyama T (2005) The role of unusual DNA structures in chromatin organization for transcription. In: Ohyama T (ed) DNA conformation and transcription. Springer, New York, pp 177–188

    Chapter  Google Scholar 

  6. Travers AA (1990) Why bent DNA? Cell 60:177–180

    Article  CAS  PubMed  Google Scholar 

  7. Hirota Y, Ohyama T (1995) Adjacent upstream superhelical writhe influences an Escherichia coli promoter as measured by in vivo strength and in vitro open complex formation. J Mol Biol 254:566–578

    Article  CAS  PubMed  Google Scholar 

  8. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  9. Morse RH (2007) Transcription factor access to promoter elements. J Cell Biochem 102:560–570

    Article  CAS  PubMed  Google Scholar 

  10. Nishikawa J, Amano M, Fukue Y, Tanaka S, Kishi H, Hirota Y, Yoda K, Ohyama T (2003) Left-handedly curved DNA regulates accessibility to cis-DNA elements in chromatin. Nucl Acids Res 31:6651–6662

    Article  CAS  PubMed  Google Scholar 

  11. Kamiya H, Fukunaga S, Ohyama T, Harashima H (2007) The location of the left-handedly curved DNA sequence affects exogenous DNA expression in vivo. Arch Biochem Biophys 461:7–12

    Article  CAS  PubMed  Google Scholar 

  12. Kamiya H, Fukunaga S, Ohyama T, Harashima H (2009) Effects of carriers on transgene expression from plasmids containing a DNA sequence with high histone affinity. Int J Pharm 376:99–103

    Article  CAS  PubMed  Google Scholar 

  13. Sumida N, Sonobe H, Ohyama T (2007) Chromatin structure formed on a eukaryotic promoter activated by a left-handed superhelical bent DNA of 180 bp. J Adv Sci 19:22–28

    Article  CAS  Google Scholar 

  14. Sumida N, Nishikawa J, Kishi H, Amano M, Furuya T, Snobe H, Ohyama T (2006) A designed curved DNA segment that is a remarkable activator of eukaryotic transcription. FEBS J 273:5691–5702

    Article  CAS  PubMed  Google Scholar 

  15. Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295

    Article  CAS  PubMed  Google Scholar 

  16. Ochman H, Gerber AS, Hart DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  Google Scholar 

  17. Teratani T, Yamamoto H, Aoyagi K, Sasaki H, Asari A, Quinn G, Sasaki H, Terada M, Ochiya T (2005) Direct hepatic fate specification from mouse embryonic stem cells. Hepatology 41:836–846

    Article  CAS  PubMed  Google Scholar 

  18. Lavon N, Benvenisty N (2005) Study of hepatocyte differentiation using embryonic stem cells. J Cell Biochem 96:1193–1202

    Article  CAS  PubMed  Google Scholar 

  19. Pfeifer GP, Chen HH, Komura J, Riggs AD (1999) Chromatin structure analysis by ligation-mediated and terminal transferase-mediated polymerase chain reaction. Methods Enzymol 304:548–571

    Article  CAS  PubMed  Google Scholar 

  20. Chadee DN, Hendzel MJ, Tylipski CP, Allis CD, Bazett-Jones DP, Wright JA, Davie JR (1999) Increased Ser-10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibroblasts. J Biol Chem 274:24914–24920

    Article  CAS  PubMed  Google Scholar 

  21. Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 79:3398–3402

    Article  CAS  PubMed  Google Scholar 

  22. Miyazaki J, Takaki S, Araki K, Tashiro F, Tominaga A, Takatsu K, Yamamura K (1989) Expression vector system based on the chicken β-actin promoter directs efficient production of interleukin-5. Gene 79:269–277

    Article  CAS  PubMed  Google Scholar 

  23. Sawicki JA, Morris RJ, Monks B, Sakai K, Miyazaki J (1998) A composite CMV-IE enhancer/β-actin promoter is ubiquitously expressed in mouse cutaneous epithelium. Exp Cell Res 244:367–369

    Article  CAS  PubMed  Google Scholar 

  24. Chung S, Andersson T, Sonntag KC, Björklund L, Isacson O, Kim KS (2002) Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 20:139–145

    Article  CAS  PubMed  Google Scholar 

  25. Malcuit C, Trask MC, Santiago L, Beaudoin E, Tremblay KD, Mager J (2009) Identification of novel oocyte and granulosa cell markers. Gene Expr Patterns 9:404–410

    Article  CAS  PubMed  Google Scholar 

  26. Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS (2009) Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 16:45–48

    Article  CAS  PubMed  Google Scholar 

  27. Zhu DY, Du Y, Huang X, Guo MY, Ma KF, Yu YP, Lou YJ (2008) MAPEG expression in mouse embryonic stem cell-derived hepatic tissue system. Stem Cells Dev 17:775–783

    Article  CAS  PubMed  Google Scholar 

  28. Stenvers KL, Tursky ML, Harder KW, Kountouri N, Amatayakul-Chantler S, Grail D, Small C, Weinberg RA, Sizeland AM, Zhu HJ (2003) Heart and liver defects and reduced transforming growth factor β2 sensitivity in transforming growth factor β type III receptor-deficient embryos. Mol Cell Biol 23:4371–4385

    Article  CAS  PubMed  Google Scholar 

  29. Lilley DM, Gough GW, Hallam LR, Sullivan KM (1985) The physical chemistry of cruciform structures in supercoiled DNA molecules. Biochimie 67:697–706

    Article  CAS  PubMed  Google Scholar 

  30. Nobile C, Nickol J, Martin RG (1986) Nucleosome phasing on a DNA fragment from the replication origin of simian virus 40 and rephasing upon cruciform formation of the DNA. Mol Cell Biol 6:2916–2922

    CAS  PubMed  Google Scholar 

  31. Kotani H, Kmiec EB (1994) DNA cruciforms facilitate in vitro strand transfer on nucleosomal templates. Mol Gen Genet 243:681–690

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contributions of S. Fujii and Y. Kadokawa. This study was supported in part by JSPS and MEXT research grants to T.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ohyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 12933 kb)

Supplementary material 2 (EPS 233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanase, Ji., Mitani, T., Udagawa, K. et al. Competence of an artificial bent DNA as a transcriptional activator in mouse ES cells. Mol Biol Rep 38, 37–47 (2011). https://doi.org/10.1007/s11033-010-0075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0075-5

Keywords

Navigation